
Concurrent Algorithms November 7, 2017

Solutions to Exercise 6

Problem 1. Write an algorithm that implements a fetch-and-increment object using atomic registers and
compare-and-swap objects.

Reminder: Fetch-and-increment is a shared object that maintains a single variable c, initialized to 0, and
provides a single operation fetch&inc with the following sequential specification:

operation fetch&inc()

c’ := c

c := c + 1

return c’

end

A compare-and-swap object is a shared object that maintains a single variable v, initialized to ⊥, and pro-
vides a single operation CAS with the following sequential specification:

operation CAS(oldVal, newVal)

v’ := v

if v = oldVal then v := newVal

return v’

end

p-1



Solution

Fetch-and-increment has a consensus number of 2, while compare-and-swap (CAS) has an infinite consen-
sus number. Therefore we will use the universal construction to implement a fetch-and-increment object
from consensus objects. Then we can replace consensus objects with their implementation1 from CAS ob-
jects. The resulting algorithm is an implementation of fetch-and-increment from CAS.

Universal construction algorithm for fetch-and-increment: Shared objects:

• Array of n atomic registers R[1, . . . , n], where n is the number of processes.

• Infinite list C of consensus objects.

Local objects:

• register seq the value of which is the number of executed operations by process p[i], initially seq = 0.

• register k the value of which is the number of decided batches of requests, initially k = 0.

• list Per f of performed requests.

• list Inv of requests which need to be performed.

• local copy f of fetch-and-increment.

Pseudocode for process p[i]:

fetch&inc()

seq ++

R[i] := (fetch&inc(), i, seq) // inform other processes about the request

repeat

Inv := Inv + R[1, .. , n].read // add new requests of other processes to the list

Inv := Inv - Perf // remove performed requests from the list

if Inv 6= ∅ then // if there are requests that were not performed

k++

Dec := C[k].propose(Inv) // decide on requests to be performed

Res := f.Dec // perform all requests from Dec on local copy f
// and record the responses to list Res

Perf := Perf + Dec // add the performed responses to list Per f
if (fetch&inc(), i, seq) ∈ Dec then // if the request by p[i] is in

// the list of decided responses

return the result of (fetch&inc(), i, seq) from Res

// return the corresponding response

1For the implementation of consensus from CAS see the lecture on the limitations of registers

p-2


