Concurrent Algorithms November 14, 2017

Solutions to Exercise 6

Problem 1.

Let A be an obstruction-free algorithm implementing some shared object O with operations op;, ..., op,.
The goal of the exercise is to transform algorithm A into a wait-free algorithm B that also implements shared
object O (i.e., the operations opy, . ..,o0p,). We will do it by implementing an abstraction called a contention
manager, using an eventually perfect failure detector &P and atomic registers.

Wait-free implementation B of shared object O

Obstruction-free | (ry/resign : suspected
algorithm A —” Contention manager }—’{ Failure detector OP ‘

A contention manager implements two operations: try; and resign; (invoked by process p;). These op-
erations do not take any arguments and always return ok. A contention manager resolves contention, and
thus guarantees wait-freedom, by delaying some processes that have invoked try;. In other words, when a
process p; invokes try;, a contention manager can decide when to return from the operation—it can delay
the response of try; for an arbitrarily long time.

We assume that algorithm A uses the interface of the contention manager, i.e., that it invokes try; and
resign;. More precisely, every time an operation op,,, implemented by A, is executed by a process p;, the
following conditions are satisfied:

1. try, is called always before the first step of the implementation of op,, is executed (i.e., just after op,, is
invoked), and possibly many times while op,, is being executed,

2. resign; is called only immediately after the last step of the implementation of op,, is executed (i.e., just
before the result of op,, is returned),

3. If process p; is correct but never returns from operation op,, (i.e., the implementation of the operation
is executed infinitely long), then p; calls try; infinitely many times.

Moreover, every time process p; invokes try; or resign;, p; waits until try; /resign; returns before executing
any further steps of algorithm A.

An eventually perfect failure detector ¢P maintains, at every process p;, a set suspected; of suspected
processes. &P guarantees that eventually, after some unknown time, the following conditions are satisfied:

1. Every correct process permanently suspects every crashed process,
2. No correct process is ever suspected by any correct process.

This means that suspected; can be arbitrary and different at every process for any finite period of time. How-
ever, eventually, at every correct process p;, set suspected; will be permanently equal to the set of processes
that have crashed.

Your task is to implement a contention manager C (i.e., the operations try; and resign;, for every process
pi) that converts obstruction-free algorithm A into wait-free algorithm B, and that uses only atomic registers
and failure detector &P.



Solution

The following algorithm implements a contention manager that transforms any obstruction-free algorithm
into a wait-free one:

uses: T[1,..., N]—array of registers, Executingl[l, ..., N]—atomic wait-free snapshot object

initially: T[1,...,N] < L, Executing[l,...,N] - L

upon try; do
if T[i] = L then T]i] < GetTimestamp()

repeat
sact; < {p; | T[j] # L A p;j & OP.suspected; }
Executing.update(i, L)

leader; < the process in sact; with the lowest timestamp T'[leader;]
if leader; = i then Executing.update(i, i)
until Executing.scan() contains only i and L

upon resign; do
T[i] + L
| Executing.update(i, 1)

The algorithm uses a procedure GetTimestamp () that generates unigue timestamps. We assume that if
a process gets a timestamp ¢ from GetTimestamp (), then no process can get a timestamp lower than f in-
finitely many times. Thus, we can easily implement GetTimestamp () using only registers (or even without
using any shared objects). For example, we can use the output of a counter (see the lecture notes on how
to implement a counter from registers) combined with a process id (to ensure that timestamps are unique).
The algorithm also uses a wait-free, atomic snapshot object to store the process that should be executing
next (or is currently executing) in order to avoid two processes executing concurrently.



