
Immediate Snapshot
CA 2017

Jingjing Wang, LPD, EPFL

Snapshot
A snapshot has two operations: update() and scan() and maintains an array x of
size n

Sequential specification

scan():

- Return (x)

update(i, v):

- x[i] := v;
- Return (OK)

Motivation for immediate snapshot
Snapshot

- Update some state
- Take a “picture” of all states
- Separately

Immediate snapshot

- Immediately take a “picture” of all states after updating a state

Semantics
The memory is accessed via a single update_snapshot operation

Semantics: each write operation, in addition to writing, also returns an atomic
snapshot

“Weakly atomic” = runs of standard atomic snapshot include runs of immediate
snapshot

The power of registers
Can immediate snapshot be implemented by atomic registers?

- Yes. At least for one-shot version

One-shot: Each process invokes at most once that operation

Immediate snapshot
An immediate snapshot has a single operation: update_snapshot() and
maintains an array x of size n

Sequential specification

update_snapshot(vi):

- x[i] := vi;
- Return {(1, x[1]), (2, x[2]), …, (n, x[n])}

Properties
Liveness. An invocation of update_snapshot() terminates

Self-inclusion. (i, vi) ∈ viewi

Containment. viewi ⊆ viewj or viewj ⊆ viewi

Immediacy. If (j, vj) ∈ viewi, then viewj ⊆ viewi

Naive implementation
n processes share an atomic snapshot object x

update_snapshot(vi):

- x.update(i, vi);
- a := x.scan();
- Return {(1, a[1]), (2, a[2]), …, (n, a[n])}

Immediacy?

update_snapshot() - {(1, v1), (2, v2)}

Immediacy?

update_snapshot()
- {(1, v1), (2, v2), (3,v3)}

Snapshot vs. immediate snapshot
An atomic snapshot

An immediate snapshot that satisfies

- Liveness, self-inclusion, containment, immediacy

Possible execution?

{(1, v1), (2, v2)}

{(1, v1), (2, v2)}

{(1, v1), (2, v2), (3,v3)}

Possible execution?

{(1, v1), (2, v2)}

{(1, v1), (2, v2)}

{(1, v1), (2, v2), (3,v3)}

Liveness. ✓

Self-inclusion. ✓

Containment. ✓

Immediacy. ✓

A property that follows
(Self-inclusion. (i, vi) ∈ viewi

+ Immediacy. If (j, vj) ∈ viewi, then viewj ⊆ viewi)

Property: If (i, -) ∈ viewj and (j, -) ∈ viewi, then viewj = viewi

=> Compared with sequential execution?

Atomicity
Every operation appears to execute at

- Some indivisible point in time (called linearization point) between
- The invocation and reply time events

Atomic execution?

{(1, v1), (2, v2)}

{(1, v1), (2, v2)}

{(1, v1), (2, v2), (3,v3)}

Set linearizability
Linearization replaced by set-linearization:

- These invocations are set-linearized at the same point of the time line

For one-shot immediate snapshot,

- The invocations which are set-linearized at the same point do return the very
same view

Key idea for set linearizability
To update_snapshot(), a process keeps reading other processes’ updates

For any two processes pi and pj,

- If pi and pj see each other’s update, then pi and pj retry reading until they are
going to return the same result

Enforcing set linearizability
The processes share an array of registers REG[1], REG[2], REG[3], …

- REG[x] is again an array of registers
- REG[x] contains a view
- REG[x][i] can only be written by pi

Pi reads REG[x]

- If pi cannot return REG[x], then pi retries, writes and reads the next REG

Enforcing set linearizability
The processes share an array of registers REG[1], REG[2], …, init’ed to ⊥

A recursive implementation:

- update_snapshot(vi):
- my_viewi := rec_update_snapshot(first, vi)
- Return my_viewi

Enforcing set linearizability
Every process keeps a local array of registers Regi

- rec_update_snapshot(x, v):
- REG[x][i].write(v);
- For each j ∈ {1,..., n} do Regi[j] := REG[x][j].read();
- Viewi := { (j, Regi[j]) | Regi[j] ≠ ⊥};
- if(some condition) then resi := viewi;
- Else resi := rec_update_snapshot(next, v);
- Return resi

Possible execution?

v1 v1 v1

v2 v2 v2

v3 v3p3

p2

p1
REG[1] REG[2] REG[3] ...

Key idea for liveness
If pi and pj see each other’s update, then pi and pj retry

- Pi is waiting for pj’s last-minute view
- So is pj
- Which view is the last one?

Key idea for liveness (cont’d)
Suppose: At most x processes access REG[x] (invariant)

If pi sees REG[x] contains exactly x updates, then

- pi is one of the last processes which access REG[x]
- Or linearized as such

p3

p2

p1
REG[x][1].write

REG[x][2].write

REG[x][3].write

Key idea for liveness (cont’d)
Suppose: At most x processes access REG[x] (invariant)

If pi sees REG[x] contains exactly x updates, then

- pi is one of the last processes which accesses REG[x]
- Or linearized as such

If the invariant is true, then after pi, REG[x] remains the same.

Key idea for liveness (cont’d)
Suppose: At most x processes access REG[x] (invariant)

If pi sees REG[x] contains exactly x updates, then

- pi is one of the last processes which accesses REG[x]
- Or linearized as such

If the invariant is true, then after pi, REG[x] remains the same

- Pi can return REG[x]
- As well as other processes who see pi’s update

Key idea for set-linearizability & liveness
Recall that we consider one-shot version:

- Each process invokes at most once update_snapshot()

- This means at most n processes access the first REG

Key idea for set-linearizability & liveness
Recall that we consider one-shot version:

- Each process invokes at most once update_snapshot()

- This means at most n processes access the first REG = REG[n]

If some condition = a process’s view of REG[n] contains n values, then

- Return REG[n]
- Otherwise, go to the next REG = REG[n-1]

Key idea for set-linearizability & liveness (cont’d)
The processes share an array of registers REG[n], REG[n-1], …, REG[1]

- Each contains a view

Claim:

(a) At most x processes can access REG[x]
(b) At least one process returns REG[x]

Immediate snapshot implementation
- update_snapshot(vi):

- my_viewi := rec_update_snapshot(n, vi)
- Return my_viewi

Immediate snapshot implementation
The processes share an array of registers REG[1, …, n], init’ed to ⊥

Every process keeps a local array of registers Regi

- rec_update_snapshot(x, v):
- REG[x][i].write(v);
- For each j ∈ {1,..., n} do Regi[j] := REG[x][j].read();
- Viewi := { (j, Regi[j]) | Regi[j] ≠ ⊥};
- if(|viewi| = x) then resi := viewi;
- Else resi := rec_update_snapshot(x-1, v);
- Return resi

Possible return value?

{(1, v1), (2, v2)}

{(1, v1), (2, v2)}

{(1, v1), (2, v2), (3,v3)}

Possible execution?

v1 v1 ... v1 v1

v2 v2 ... v2 v2

v3 v3 ... v3p3

p2

p1
REG[n] REG[n-1] ... REG[3] REG[2]

References
[1] Elizabeth Borowsky and Eli Gafni. 1993. Immediate atomic snapshots and fast
renaming. In Proceedings of the twelfth annual ACM symposium on Principles of
distributed computing (PODC '93). ACM, New York, NY, USA, 41-51.
DOI=http://dx.doi.org/10.1145/164051.164056

[2] Raynal M. (2013) Snapshot Objects from Read/Write Registers Only. In:
Concurrent Programming: Algorithms, Principles, and Foundations. Springer,
Berlin, Heidelberg

http://dx.doi.org/10.1145/164051.164056

