
Concurrent Algorithms 2017

Midterm Exam
Solutions

November 21th, 2017

Time: 1h45

Instructions:

• This midterm is “closed book”: no notes, electronics, or cheat sheets allowed.

• When solving a problem, do not assume any known result from the lectures, unless we explicitly
state that you might use some known result.

• Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

• Remember to write which variables represent shared objects (e.g., registers).

• Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

• Unless otherwise stated, we ask for wait-free algorithms.

• Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

• For every algorithm you write, provide a short explanation of why the algorithm is correct.

• Make sure that your name and SCIPER number appear on every sheet of paper you hand in.

• You are only allowed to use additional pages handed to you upon request by the TAs.

Good luck!

Problem Max Points Score
1 2

2 2

3 4

Total 8

1



2



Problem 1 (2 points)

Your tasks:

1. Write an algorithm that implements an MRSW regular M-valued register using (any number of)
MRSW regular binary registers.

2. In your algorithm, if you replace the base registers (MRSW regular binary registers) by MRSW
atomic binary registers, does your algorithm yield an MRSW atomic M-valued register? Justify
your answer (i.e., give a counterexample if your algorithm does not work, or prove correctness if
it does).

Solution

1. Please refer to page 15 of lecture slides “Registers”.

2. If your algorithm, denoted by A, is the same as shown in page 15 of lecture slides “Registers”,
then the answer here is no. A counterexample is described below. Assume that M = 2 and two
processes p1 and p2. First p1 starts Read(); p1 then pauses after p1 has read Reg[0] and Reg[1]; p1
is going to read Reg[2] but pauses. Then p2 starts Write(1), finishes Write(1) and starts Write(2);
p2 pauses after p1 has written Reg[2]; p1 is going to write Reg[1] but pauses. Next p1 resumes
and read Reg[2]; thus p1 finds Reg[2] = 1 and returns 2; p1 continues with a new Read(), and
finishes Read(). However, this time p1 returns 1 as p1 finds Reg[1] = 1. Now p2 resumes and
finishes Write(2). This execution breaks atomicity in that at p1, there is a new-old inversion and it
is impossible to linearize p1 and p2’s operations.

3



4



Problem 2 (2 points)

This problem is about computing with anonymous processes.
Recall that a weak counter shared object has a single operation wInc that takes no argument, and

returns a value ts. A weak counter satisfies the following property. Let w1 and w2 be two invocations of
wInc. If w1 returns before w2 starts, then w2 returns a larger value than w1.

Consider the following implementation of snapshot with anonymous processes (as given in the
lecture). Recall that a snapshot shared object has two operations update and scan, and maintains an array
of size m. No component of this array is devoted to a process. The number n of anonymous processes
can be arbitrary but known to the implementation.

Using: an array of atomic multi-valued MRMW shared registers Reg[1, 2, ..., m],
initialized to 0;

Using: a weak counter C, initialized to 0;

update(i, x) {
ts := C.wInc();
v := scan();
write (x, v, ts) in Reg[i];

}

scan() {
ts := C.wInc();
while (true) do{

read Reg[1], Reg[2], ..., Reg[m];
if some register contained (∗, v, t) with t ≥ ts
then return v;
else if n + 1 sets of reads gave the same results
then return the first field of each value in such a set;

}
}

The second return condition (underlined) checks if n + 1 sets of reads gave the same results. Your
task is to explain what happens if the condition is replaced by the following:

• if n + 2 sets of reads gave the same results.

More specifically, please answer whether the implementation is still correct after the replacement. If
not, please provide a concrete counter-example (for which it is sufficient for you to specify an n of
your choice). If the implementation is still correct, please justify your answer for any arbitrary n and
explain whether the behavior of executions of the implementation changes, and if so, please articulate
the change(s).

Solution

The implementation is correct. It is easy to see that the implementation does not break linearizability. To
see that the implementation eventually terminates, we emphasize here that according to the first return
condition, one scan collects at most n− 1 different sets of reads (as the nth different set of reads must
include an update that starts later than wInc in the current scan and thus have a higher timestamp.)
The behavior changes in that scan() now takes more time to terminate.

5



6



Problem 3 (4 points)

In this problem, we consider a system of n processes.
An (m, n)-assignment object, where n ≥ m > 1, has n fields (for instance, an n-element array) and

two operations: assign() and read(). The assign() operation takes as arguments m values v1, ..., vm
and m indices i1, ..., im and atomically assigns value vj to array element ij, for j = 1, ..., m. Note: the
entire sequence of m assignments is atomic. The read() operation takes an index argument i and
returns the ith array element.

Your task is to prove that atomic (n, n(n+1)
2 )-assignment objects, where n > 1, have consensus

number at least n.

Hint: Give a consensus protocol for n processes using atomic (n, n(n+1)
2 )-assignment objects and

atomic registers.

Solution

Please refer to Section 3.6 of the paper ”Wait-free Synchronization” by Maurice Herlihy:

https://cs.brown.edu/˜mph/Herlihy91/p124-herlihy.pdf

7

https://cs.brown.edu/~mph/Herlihy91/p124-herlihy.pdf


8



9



10


