Verifying Linearizability

Jad Hamza

EPFL

19 December 2017

If the **implementation** L is **linearizable** (with respect to an atomic specification S), then for any user/client program P, we have:

 $\mathsf{P}[\mathsf{L}]\subseteq\mathsf{P}[\mathsf{S}]$

If the **implementation** L is **linearizable** (with respect to an atomic specification S), then for any user/client program P, we have:

$\mathsf{P}[\mathsf{L}]\subseteq\mathsf{P}[\mathsf{S}]$

i.e., P produces less behaviors when using L than when using S

If the **implementation** L is **linearizable** (with respect to an atomic specification S), then for any user/client program P, we have:

$\mathsf{P}[\mathsf{L}]\subseteq\mathsf{P}[\mathsf{S}]$

i.e., P produces less behaviors when using L than when using S

Application: If we prove a safety property on a program *P* using an atomic queue *S*, we can replace the atomic queue by a (more efficient) concurrent linearizable implementation *L*, and the safety property will still hold. 1/32

Introduction

Testing

Verification

Events and Trace Example

Events and Traces

Definition (Events)

A call event is a tuple with a thread identifier, a method name, and a parameter.

Events and Traces

Definition (Events)

A call event is a tuple with a thread identifier, a method name, and a parameter.

A return event is a pair with a thread identifier and a return value.

Events and Traces

Definition (Events)

A call event is a tuple with a thread identifier, a method name, and a parameter.

A return event is a pair with a thread identifier and a return value.

Definition (Trace)

A trace is a sequence of call and return events.

Operation

Definition (Operation)

An operation is a tuple with a thread identifier, a method name, a parameter and a return value. (corresponds to a pair of matching call and return events)

The trace is linearizable to $enq(1) \cdot enq(2) \cdot deq(1) \cdot deq(2)$.

The trace is linearizable to $enq(1) \cdot enq(2) \cdot deq(1) \cdot deq(2)$. And also linearizable to $enq(1) \cdot deq(1) \cdot enq(2) \cdot deq(2)$.

The trace is linearizable to $enq(1) \cdot enq(2) \cdot deq(1) \cdot deq(2)$. And also linearizable to $enq(1) \cdot deq(1) \cdot enq(2) \cdot deq(2)$. And also linearizable to $deq(1) \cdot enq(1) \cdot enq(2) \cdot deq(2)$. (not a valid Queue sequence)

Linearization Points

Definition (Linearizability)

A trace t is **linearizable** with respect to a sequence of operations w, denoted $t \sqsubseteq w$ if, for each operation o, we can find a **point** (called linearization point) between the call and return event of o such that:

the obtained sequence of operations is w.

History

Definition (History)

A history h = (O, <) is a strict partial order (irreflexive and transitive) over a set of operations O.

History

Definition (History)

A history h = (O, <) is a strict partial order (irreflexive and transitive) over a set of operations O.

For a trace t, we define the history hist(t) to be (O, <) where:

- O is the set of operations that appear in t
- for $o_1, o_2 \in O$, $o_1 < o_2$ iff the return event of o_1 is before the call event of o_2 in t.

Introduction

Verification

Example of Trace/History

Introduction

Example of Trace/History

Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a **history** h = (O, <) is **linearizable** with respect to a sequence w, denoted $\mathbf{h} \sqsubseteq \mathbf{w}$ if we can obtain w by reordering the operations of h, while respecting the order <.

Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a **history** h = (O, <) is **linearizable** with respect to a sequence w, denoted $\mathbf{h} \sqsubseteq \mathbf{w}$ if we can obtain w by reordering the operations of h, while respecting the order <.

< must be a **subset** of the total order given by $w: < \subseteq <_w$

Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a **history** h = (O, <) is **linearizable** with respect to a sequence w, denoted $\mathbf{h} \sqsubseteq \mathbf{w}$ if we can obtain w by reordering the operations of h, while respecting the order <.

< must be a subset of the total order given by $w: < \subseteq <_w$

Definition (Linearizability of a trace)

A trace t is linearizable with respect to w, denoted $t \sqsubseteq w$ if hist(t) is linearizable with respect to w.

Example

Example

Linearizable to: $enq(1) \cdot deq(1) \cdot enq(3) \cdot deq(3) \cdot enq(2) \cdot deq(2)$.

Linearizability

Definition (Specification)

A **specification** *S* is a set of sequences.

Linearizability

Definition (Specification)

A **specification** *S* is a set of sequences.

Definition (Linearizability with respect to a specification)

A history *h* is linearizable with respect to a specification *S*, denoted $h \sqsubseteq S$, if there exists $w \in S$ such that $h \sqsubseteq w$.

Linearizability

Definition (Specification)

A **specification** *S* is a set of sequences.

Definition (Linearizability with respect to a specification) A **history** h is linearizable with respect to a **specification** S, denoted $h \sqsubseteq S$, if there exists $w \in S$ such that $h \sqsubseteq w$.

Definition (Linearizability of a library)

A **library** *L* is **linearizable** with respect to *S*, denoted $L \subseteq S$ if every history/trace produced by *L* is linearizable with respect to *S*.

Linearizability checking problems

Problem (Testing)

Given a history h, and a specification S, check whether $h \sqsubseteq S$

Linearizability checking problems

Problem (Testing)

Given a history h, and a specification S, check whether $h \sqsubseteq S$

Problem (Verification)

Given a library L, and a specification S, check whether $L \sqsubseteq S$. (check $h \sqsubseteq S$ for every h in L)

Motivation for Testing: Bug-Finding

- Enumerate many traces of a library
- Check for each one, individually, whether it is linearizable

Motivation for Testing: Bug-Finding

- Enumerate many traces of a library
- Check for each one, individually, whether it is linearizable

If we find a non-linearizable trace, we found a **bug**.

Motivation for Testing: Bug-Finding

- Enumerate many traces of a library
- Check for each one, individually, whether it is linearizable

If we find a non-linearizable trace, we found a **bug**.

Limitation of testing: cannot verify that **all** the traces of a library are linearizable (there are infinitely many traces)

Bruteforce Algorithm

Given h = (O, <) and S, check whether $h \sqsubseteq S$:

Bruteforce Algorithm

Given h = (O, <) and S, check whether $h \sqsubseteq S$:

- If there exists a permutation w of O such that w respects < and w ∈ S, return true
- Otherwise, return false
Bruteforce Algorithm

Given h = (O, <) and S, check whether $h \sqsubseteq S$:

- If there exists a permutation w of O such that w respects < and w ∈ S, return true
- Otherwise, return false

Worst case: |O|! permutations to explore

Example

Example

Check each of the 6! = 720 permutations.

Example (minor improvement)

Testing

Verification

Example (minor improvement)

Start from the **minimal nodes**, and only explore linearizations that respect < and the **specification**.

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

```
def isLinearizable(prefix: Seq[Operations], h: History):
    Boolean = {
```

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

```
def isLinearizable(prefix: Seq[Operations], h: History):
    Boolean = {
    h.isEmpty || // if h is empty, we are done!
```

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

```
def isLinearizable(prefix: Seq[Operations], h: History):
    Boolean = {
    h.isEmpty || // if h is empty, we are done!
    h.operations.exists { o =>
      val newPrefix = prefix · o // add o to the prefix
```

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

```
def isLinearizable(prefix: Seq[Operations], h: History):
    Boolean = {
    h.isEmpty || // if h is empty, we are done!
    h.operations.exists { o =>
    val newPrefix = prefix · o // add o to the prefix
    isMinimal(h,o) &&
    newPrefix ∈ S &&
```

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

```
def isLinearizable(prefix: Seq[Operations], h: History):
    Boolean = {
    h.isEmpty || // if h is empty, we are done!
    h.operations.exists { o =>
      val newPrefix = prefix · o // add o to the prefix
      isMinimal(h,o) &&
      newPrefix ∈ S &&
      isLinearizable(newPrefix, h - o)
    }
}
```

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

Check if there exists w such that $h \sqsubseteq w$ and prefix $\cdot w \in S$. (coincides with $h \sqsubseteq S$ when prefix is empty)

```
def isLinearizable(prefix: Seq[Operations], h: History):
    Boolean = {
    h.isEmpty || // if h is empty, we are done!
    h.operations.exists { o =>
      val newPrefix = prefix · o // add o to the prefix
      isMinimal(h,o) &&
      newPrefix ∈ S &&
      isLinearizable(newPrefix, h - o)
    }
}
```

For a history h, we have $h \sqsubseteq S$ iff isLinearizable(Seq(), h) holds.

Let S be a specification. Let $prefix \in S$ be a sequence of operations and h = (0, <) be a history.

Check if there exists w such that $h \sqsubseteq w$ and prefix $\cdot w \in S$. (coincides with $h \sqsubseteq S$ when prefix is empty)

```
def isLinearizable(prefix: Seq[Operations], h: History):
    Boolean = {
    h.isEmpty || // if h is empty, we are done!
    h.operations.exists { o =>
      val newPrefix = prefix · o // add o to the prefix
      isMinimal(h,o) &&
      newPrefix ∈ S &&
      isLinearizable(newPrefix, h - o)
    }
}
```

For a history h, we have $h \sqsubseteq S$ iff isLinearizable(Seq(), h) holds. Worst case: still |O|! permutations to explore

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97)

Given h and S, checking $h \sqsubseteq S$ is NP-complete.

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97) Given h and S, checking $h \sqsubseteq S$ is NP-complete.

 (\Rightarrow) No **polynomial-time** algorithm, unless P = NP

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97) Given h and S, checking $h \sqsubseteq S$ is NP-complete.

 (\Rightarrow) No **polynomial-time** algorithm, unless P = NP

However, there are **polynomial-time** algorithms if we look at particular specifications S.

Verification

Testing Problem for Queues

Problem (Linearizability for Queues) Given a history h, check whether $h \sqsubseteq Queue$.

Bad Pattern 1 and Bad Pattern 1'

A dequeue operation with no corresponding enqueue.

- (BP1) a deq(1) such that enq(1) does not exist at all
- (BP1') two or more *deq*(1) (this is bad because we assume enqueues are unique)

Testing

Bad Pattern 2

Two enqueue's enq(1) < enq(2) such that deq(2) < deq(1). (if deq(1) isn't in the history, we pose that deq(2) < deq(1) holds)

Bad Pattern 3 (Example A)

A *deq(empty)* operation **covered** by pairs of enqueue/dequeue.

Bad Pattern 3 (Example B)

A *deq(empty)* operation **covered** by pairs of enqueue/dequeue.

Bad Pattern 3 (Example C)

A *deq(empty)* operation **covered** by pairs of enqueue/dequeue.

Defining Bad Pattern 3 Formally

Given a history h = (O, <), and some deq(empty) operation in O, we construct a graph G such that:

- the vertices of G are the values that are enqueued in h and a vertice for the deq(empty) operation
- there is an edge from v₁ to v₂ iff enq(v₁) < deq(v₂)
- there is an edge from deq(empty) to v iff deq(empty) < deq(v)
- there is an edge from v to deq(empty) iff enq(v) < deq(empty)

Definition

The operation deq(empty) is **covered** iff there is a **cycle** going through deq(empty) in the graph.

Bad Patterns

- (BP1) a deq(v) such that there exists no enq(v)
- (BP1') two deq(v) operations (or more)
- (BP2) two enqueue operations dequeued in the wrong order
- (BP3) a *deq(empty)* operation which is **covered**

Bad Patterns

- (BP1) a deq(v) such that there exists no enq(v)
- (BP1') two deq(v) operations (or more)
- (BP2) two enqueue operations dequeued in the wrong order
- (BP3) a *deq(empty)* operation which is **covered**

Theorem (Bad Patterns)

Let h be a history (with unique enqueues). Then $h \sqsubseteq Queue$ if and only if h doesn't contain one of these bad patterns

Polynomial-time algorithm

We can check in polynomial-time if h has a bad pattern.

Theorem

Let h be a history (with unique enqueues). We can check $h \sqsubseteq Queue$ in polynomial-time.

Proof.

Check for the absence of bad patterns. Each one can be checked in polynomial-time.

- (BP1) a deq(v) such that there exists no enq(v)
- (BP1') two deq(v) operations (or more)
- (BP2) two enqueue operations dequeued in the wrong order
- (BP3) a *deq(empty*) operation which is **covered**

27

Polynomial-time algorithm

We can check in polynomial-time if h has a bad pattern.

Theorem

Let h be a history (with unique enqueues). We can check $h \sqsubseteq Queue$ in polynomial-time.

Proof.

Check for the absence of bad patterns. Each one can be checked in polynomial-time.

- (BP1) a deq(v) such that there exists no enq(v)
- (BP1') two deq(v) operations (or more)
- (BP2) two enqueue operations dequeued in the wrong order
- (BP3) a *deq(empty*) operation which is **covered**

Limitations of Testing

Checking that $h \sqsubseteq S$ one by one, we can never be sure that $L \sqsubseteq S$ A library produces an **infinite** amount of traces/histories.

Herlihy & Wing Queue

```
var table = Map[Int,Value]()
var n: Int = 0
```

```
// represents the queue
// index of the next enqueue
```

Herlihy & Wing Queue

```
var table = Map[Int,Value]() // represents the queue
var n: Int = 0 // index of the next enqueue
def enqueue(v: Value): Unit = {
   synchronized { i = n; n = n + 1 } // atomic operation
   table(i) = v
}
```

Herlihy & Wing Queue

```
var table = Map[Int,Value]() // represents the queue
var n: Tnt = 0
                                 // index of the next enqueue
def enqueue(v: Value): Unit = {
  synchronized { i = n; n = n + 1 } // atomic operation
  table(i) = v
}
def dequeue(): Value = {
  while(true) {
    val m = n
    for (k < -0 \text{ to } m-1) {
      // get the element at index k, and write null instead
      val v = SWAP(table(k), null)
      // if not null, return the element
      if (v \mid = null)
        return v
   }
 }
ን
```

Introduction

H&W Queue is Linearizable

Theorem

The H&W Queue $L_{H\&W}$ is linearizable, i.e. $L_{H\&W} \sqsubseteq Queue$.

H&W Queue is Linearizable

Theorem

The H&W Queue $L_{H\&W}$ is linearizable, i.e. $L_{H\&W} \sqsubseteq Queue$.

Proof.

We prove that $h \sqsubseteq Queue$ for every $h \in L_{H\&W}$. It suffices to prove that h has no bad pattern. We assume that h has a bad pattern and derive a contradiction (stetch)
Theorem

The H&W Queue $L_{H\&W}$ is linearizable, i.e. $L_{H\&W} \sqsubseteq Queue$.

Proof.

We prove that $h \sqsubseteq Queue$ for every $h \in L_{H\&W}$. It suffices to prove that h has no bad pattern. We assume that h has a bad pattern and derive a contradiction (stetch)

• BP1: Not possible because dequeue always returns values from the map, and the map always contains values that were previously enqueued.

Theorem

The H&W Queue $L_{H\&W}$ is linearizable, i.e. $L_{H\&W} \sqsubseteq Queue$.

Proof.

We prove that $h \sqsubseteq Queue$ for every $h \in L_{H\&W}$. It suffices to prove that h has no bad pattern. We assume that h has a bad pattern and derive a contradiction (stetch)

- BP1: Not possible because dequeue always returns values from the map, and the map always contains values that were previously enqueued.
- BP1': Not possible when assuming unique enqueues, and due to the atomicity of SWAP.

Theorem

The H&W Queue $L_{H\&W}$ is linearizable, i.e. $L_{H\&W} \sqsubseteq Queue$.

Proof.

We prove that $h \sqsubseteq Queue$ for every $h \in L_{H\&W}$. It suffices to prove that h has no bad pattern. We assume that h has a bad pattern and derive a contradiction (stetch)

- BP1: Not possible because dequeue always returns values from the map, and the map always contains values that were previously enqueued.
- BP1': Not possible when assuming unique enqueues, and due to the atomicity of SWAP.
- BP2: Not possible as the *first* enqueue operation will be stored at a smaller index in the table

0/31

Theorem

The H&W Queue $L_{H\&W}$ is linearizable, i.e. $L_{H\&W} \sqsubseteq Queue$.

Proof.

We prove that $h \sqsubseteq Queue$ for every $h \in L_{H\&W}$. It suffices to prove that h has no bad pattern. We assume that h has a bad pattern and derive a contradiction (stetch)

- BP1: Not possible because dequeue always returns values from the map, and the map always contains values that were previously enqueued.
- BP1': Not possible when assuming unique enqueues, and due to the atomicity of SWAP.
- BP2: Not possible as the *first* enqueue operation will be stored at a smaller index in the table
- BP3: Not possible because dequeue never returns empty

Summary

- Testing for finding bugs
- Verification for finding bugs or proving correctness
- Checking linearizability for one trace is NP-complete
- But, **polynomial-time** if we restrict the specification to Queue/Stack and histories with unique enqueues/pushes
- It is enough to check for **bad patterns**
- Careful: Stack bad patterns are **not symmetric** wrt Queue bad patterns

References:

(1) Aspect-Oriented Linearizability Proofs. Chakraborty et al.

(2) On Reducing Linearizability to State Reachability. Bouajjani et al.