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Why Linearizability? Ensuring Observational Refinement

@D @D | @ @@ |

R O o Y 1 N

[ Implementation (L) j [ Atomic Queue (S) j

If the implementation L is linearizable (with respect to an atomic
specification S), then for any user/client program P, we have:

P[L] € P[§]
i.e., P produces less behaviors when using L than when using S

Application: If we prove a safety property on a program P using an
atomic queue S, we can replace the atomic queue by a (more efficient)
concurrent linearizable implementation L, and the safety property will
still hold. 1/31
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Events and Traces

A call event is a tuple with a thread identifier, a method name,
and a parameter.

A return event is a pair with a thread identifier and a return
value.

A trace is a sequence of call and return events. l
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Operation

An operation is a tuple with a thread identifier, a method
name, a parameter and a return value.
(corresponds to a pair of matching call and return events)
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Linearization Points Example

enq(1) enq(2)
— .
deq(li) deq(2)
| — —
. “ e .
eng(1) eng(2)  deq(1) deq(2)

The trace is linearizable to enqg(1) - enq(2) - deq(1) - deq(2).
And also linearizable to enq(1) - deq(1) - enq(2) - deq(2).

And also linearizable to deq(1) - enq(1) - enq(2) - deg(2). (not a
valid Queue sequence)
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Linearization Points

Definition (Linearizability)

A trace t is linearizable with respect to a sequence of operations
w, denoted ¢t C w if, for each operation o, we can find a point
(called linearization point) between the call and return event of o
such that:

the obtained sequence of operations is w.
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History

A history h = (0, <) is a strict partial order (irreflexive and
transitive) over a set of operations O.
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History

Definition (History)
A history h = (O, <) is a strict partial order (irreflexive and
transitive) over a set of operations O.

For a trace t, we define the history hist(t) to be (O, <) where:

e O is the set of operations that appear in t
e for 01,00 € O, 01 < 0y iff the return event of 07 is before the
call event of o5 in t.
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Definition (Linearizability of a history)

We say that a history h = (O, <) is linearizable with respect to a
sequence w, denoted h T w if we can obtain w by reordering the
operations of h, while respecting the order <.
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Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a history h = (O, <) is linearizable with respect to a
sequence w, denoted h T w if we can obtain w by reordering the
operations of h, while respecting the order <.

< must be a subset of the total order given by w: < C <,

Definition (Linearizability of a trace)

A trace t is linearizable with respect to w, denoted t C w if
hist(t) is linearizable with respect to w.
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Example

deq(3) .\dclq(Q)
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Linearizable to: eng(1) - deq(1) - enq(3) - deq(3) - enq(2) - deq(2).
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Linearizability

Definition (Specification)

A specification S is a set of sequences.

Definition (Linearizability with respect to a specification)

A history h is linearizable with respect to a specification S,
denoted h C S, if there exists w € S such that h C w.

Definition (Linearizability of a library)

A library L is linearizable with respect to S, denoted L C S if
every history/trace produced by L is linearizable with respect to S.
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Linearizability checking problems

Problem (Testing)
Given a history h, and a specification S, check whether hC S J

Problem (Verification)

Given a library L, and a specification S, check whether LC S.
(check h T S for every h in L)
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Introduction Testing Verification

Motivation for Testing: Bug-Finding

e Enumerate many traces of a library

e Check for each one, individually, whether it is linearizable

If we find a non-linearizable trace, we found a bug.

Limitation of testing: cannot verify that all the traces of a library
are linearizable (there are infinitely many traces)
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Bruteforce Algorithm

Given h=(0,<) and S, check whether h C S:

o If there exists a permutation w of O such that
w respects < and w € S, return true

e Otherwise, return false

Worst case: |O|! permutations to explore
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Check each of the 6! = 720 permutations.
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Example (minor improvement)

deq(3)
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enqg(1) /
RN e )

—>e—>e"cnq(2
enq(3)

Start from the minimal nodes, and only explore linearizations that
respect < and the specification.
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def
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isLinearizable(prefix: Seq[Operations], h: History):
Boolean = {

isEmpty || // if h is empty, we are done!
operations.exists { o =>
val newPrefix = prefix - o // add o to the prefix

isMinimal (h,o0) &&
newPrefix € S &&
isLinearizable (newPrefix, h - o)
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Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def isLinearizable(prefix: Seql[Operations], h: History):

Boolean = {
h.isEmpty || // if h is empty, we are done!
h.operations.exists { o =>

val newPrefix = prefix - o // add o to the prefix

isMinimal (h,o0) &&
newPrefix € S &&
isLinearizable (newPrefix, h - o)

Verification
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isLinearizable(prefix: Seq[Operations], h: History):
Boolean = {

isEmpty || // if h is empty, we are done!
operations.exists { o =>
val newPrefix = prefix - o // add o to the prefix
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For a history h, we have h C S iff isLinearizable(Seq(), h) holds.
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isMinimal (h,o0) &&
newPrefix € S &&
isLinearizable (newPrefix, h - o)

For a history h, we have h C S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore
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Introduction Testing Verification

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97)
Given h and S, checking h C S is NP-complete. }

(=) No polynomial-time algorithm, unless P = NP

However, there are polynomial-time algorithms if we look at
particular specifications S.

18 /31
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Testing Problem for Queues

Problem (Linearizability for Queues)
Given a history h, check whether h C Queue. J
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Bad Pattern 1 and Bad Pattern 1’

A dequeue operation with no corresponding enqueue.
e (BP1) a deq(1) such that eng(1) does not exist at all

e (BP1") two or more deq(1) (this is bad because we assume
enqueues are unique)
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Bad Pattern 2

Two enqueue’s eng(1) < enq(2) such that deq(2) < deq(1).
(if deg(1) isn't in the history, we pose that deq(2) < deq(1) holds)

| 1 |
1 I 1

Eng(1) Enq(2)

Deq(2) Deq(1)
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Bad Pattern 3 (Example A)

A deq(empty) operation covered by pairs of enqueue/dequeue.

deq(empty)

enq(1) deq(1)
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Bad Pattern 3 (Example B)

A deq(empty) operation covered by pairs of enqueue/dequeue.

deq(empty)
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Bad Pattern 3 (Example C)

A deq(empty) operation covered by pairs of enqueue/dequeue.

deq(empty)
en(1) deq(1)
— } |
eng(2) deq(2)
L i
enq(3) deq(3)
} | —
| enq(4) | deq(4)
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Defining Bad Pattern 3 Formally
Given a history h = (0, <), and some deq(empty) operation in O,
we construct a graph G such that:
o the vertices of G are the values that are enqueued in h and a
vertice for the deq(empty) operation
e there is an edge from vy to v» iff
enq(v1) < deq(vz)
e there is an edge from deq(empty) to v iff
deq(empty) < deq(v)
e there is an edge from v to deq(empty) iff
enq(v) < deq(empty)

Definition

The operation deq(empty) is covered iff there is a cycle going
through deg(empty) in the graph.

25 /31
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Bad Patterns

BP1) a deqg(v) such that there exists no eng(v)

(

(BP1'") two deq(v) operations (or more)

(BP2) two enqueue operations dequeued in the wrong order
(

BP3) a deq(empty) operation which is covered
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Bad Patterns

(BP1) a deqg(v) such that there exists no eng(v)
(BP1'") two deq(v) operations (or more)
(
(

BP2) two enqueue operations dequeued in the wrong order

BP3) a deq(empty) operation which is covered

Theorem (Bad Patterns)

Let h be a history (with unique enqueues).
Then h C Queue if and only if
h doesn’t contain one of these bad patterns
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Polynomial-time algorithm
We can check in polynomial-time if h has a bad pattern.

Theorem

Let h be a history (with unique enqueues).
We can check h C Queue in polynomial-time.

Proof.
Check for the absence of bad patterns. Each one can be checked in
polynomial-time.
e (BP1) a deqg(v) such that there exists no enqg(v)
e (BP1') two deq(v) operations (or more)
e (BP2) two enqueue operations dequeued in the wrong order
(

BP3) a deq(empty) operation which is covered
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We can check in polynomial-time if h has a bad pattern.

Theorem

Let h be a history (with unique enqueues).
We can check h C Queue in polynomial-time.

Proof.
Check for the absence of bad patterns. Each one can be checked in
polynomial-time.
e (BP1) a deqg(v) such that there exists no enqg(v)
e (BP1') two deq(v) operations (or more)
e (BP2) two enqueue operations dequeued in the wrong order
(

BP3) a deq(empty) operation which is covered

0
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Limitations of Testing

Checking that h = S one by one, we can never be sure that LC S
A library produces an infinite amount of traces/histories.
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Herlihy & Wing Queue

var table = Map[Int,Value] () // represents the queue
var n: Int = 0 // index of the next enqueue
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Herlihy & Wing Queue

var table = Map[Int,Value] () // represents the queue
var n: Int = 0 // index of the next enqueue
def enqueue(v: Value): Unit = {

synchronized { i = n; n = n + 1 } // atomic operation

table(i) = v
}
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Herlihy & Wing Queue

var table = Map[Int,Value] () // represents the queue

var n: Int = 0 // index of the next enqueue
def enqueue(v: Value): Unit = {
synchronized { i = n; n = n + 1 } // atomic operation
table(i) = v
}

def dequeue(): Value = {
while (true) {
val m = n
for (k <- 0 to m-1) {
// get the element at index k, and write null instead
val v = SWAP(table(k), null)
// if not null, return the element
if (v != null)
return v

29 /31
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The H&W Queue Lyg,w Is linearizable, i.e. Lygw T Queue. I
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H&W Queue is Linearizable

Theorem
The H&W Queue Lyg,w is linearizable, i.e. Lyg,w T Queue.

Proof.

We prove that h C Queue for every h € Lygw. It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)
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Theorem
The H&W Queue Lyg,w is linearizable, i.e. Lyg,w T Queue.

Proof.

We prove that h C Queue for every h € Lygw. It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

® BP1: Not possible because dequeue always returns values from the map,
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H&W Queue is Linearizable

Theorem
The H&W Queue Lyg,w is linearizable, i.e. Lyg,w T Queue.

Proof.

We prove that h C Queue for every h € Lygw. It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

® BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

® BP1': Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

® BP2: Not possible as the first enqueue operation will be stored at a
smaller index in the table

® BP3: Not possible because dequeue never returns empty
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Summary

Testing for finding bugs

Verification for finding bugs or proving correctness

Checking linearizability for one trace is NP-complete

But, polynomial-time if we restrict the specification to
Queue/Stack and histories with unique enqueues/pushes

It is enough to check for bad patterns

Careful: Stack bad patterns are not symmetric wrt Queue
bad patterns

References:
(1) Aspect-Oriented Linearizability Proofs. Chakraborty et al.
(2) On Reducing Linearizability to State Reachability. Bouajjani et al.
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