
Introduction Testing Verification

Verifying Linearizability

Jad Hamza

EPFL

19 December 2017

0 / 31

Introduction Testing Verification

Why Linearizability? Ensuring Observational Refinement

Implementation (L)

Client 1 Client 2
. . .‖ ‖

Atomic Queue (S)

Client 1 Client 2
. . .‖ ‖

If the implementation L is linearizable (with respect to an atomic
specification S), then for any user/client program P, we have:

P[L] ⊆ P[S]

i.e., P produces less behaviors when using L than when using S

Application: If we prove a safety property on a program P using an
atomic queue S , we can replace the atomic queue by a (more efficient)
concurrent linearizable implementation L, and the safety property will
still hold.

1 / 31

Introduction Testing Verification

Why Linearizability? Ensuring Observational Refinement

Implementation (L)

Client 1 Client 2
. . .‖ ‖

Atomic Queue (S)

Client 1 Client 2
. . .‖ ‖

If the implementation L is linearizable (with respect to an atomic
specification S), then for any user/client program P, we have:

P[L] ⊆ P[S]

i.e., P produces less behaviors when using L than when using S

Application: If we prove a safety property on a program P using an
atomic queue S , we can replace the atomic queue by a (more efficient)
concurrent linearizable implementation L, and the safety property will
still hold.

1 / 31

Introduction Testing Verification

Why Linearizability? Ensuring Observational Refinement

Implementation (L)

Client 1 Client 2
. . .‖ ‖

Atomic Queue (S)

Client 1 Client 2
. . .‖ ‖

If the implementation L is linearizable (with respect to an atomic
specification S), then for any user/client program P, we have:

P[L] ⊆ P[S]

i.e., P produces less behaviors when using L than when using S

Application: If we prove a safety property on a program P using an
atomic queue S , we can replace the atomic queue by a (more efficient)
concurrent linearizable implementation L, and the safety property will
still hold.

1 / 31

Introduction Testing Verification

Why Linearizability? Ensuring Observational Refinement

Implementation (L)

Client 1 Client 2
. . .‖ ‖

Atomic Queue (S)

Client 1 Client 2
. . .‖ ‖

If the implementation L is linearizable (with respect to an atomic
specification S), then for any user/client program P, we have:

P[L] ⊆ P[S]

i.e., P produces less behaviors when using L than when using S

Application: If we prove a safety property on a program P using an
atomic queue S , we can replace the atomic queue by a (more efficient)
concurrent linearizable implementation L, and the safety property will
still hold. 1 / 31

Introduction Testing Verification

Events and Trace Example

Thread 1

en
q(

1)
re
t

de
q(

)

de
q(

)
Thread 2

re
t(

1)
en
q(

3)
re
t

en
q(

2)
re
t

re
t(

3)

de
q(

)
re
t(

2)

2 / 31

Introduction Testing Verification

Events and Traces

Definition (Events)

A call event is a tuple with a thread identifier, a method name,
and a parameter.

A return event is a pair with a thread identifier and a return
value.

Definition (Trace)

A trace is a sequence of call and return events.

3 / 31

Introduction Testing Verification

Events and Traces

Definition (Events)

A call event is a tuple with a thread identifier, a method name,
and a parameter.

A return event is a pair with a thread identifier and a return
value.

Definition (Trace)

A trace is a sequence of call and return events.

3 / 31

Introduction Testing Verification

Events and Traces

Definition (Events)

A call event is a tuple with a thread identifier, a method name,
and a parameter.

A return event is a pair with a thread identifier and a return
value.

Definition (Trace)

A trace is a sequence of call and return events.

3 / 31

Introduction Testing Verification

Operation

Definition (Operation)

An operation is a tuple with a thread identifier, a method
name, a parameter and a return value.
(corresponds to a pair of matching call and return events)

4 / 31

Introduction Testing Verification

Linearization Points Example

enq(1)

deq(1)

enq(2)

deq(2)

enq(1) enq(2) deq(1) deq(2)

The trace is linearizable to enq(1) · enq(2) · deq(1) · deq(2).
And also linearizable to enq(1) · deq(1) · enq(2) · deq(2).
And also linearizable to deq(1) · enq(1) · enq(2) · deq(2). (not a
valid Queue sequence)

5 / 31

Introduction Testing Verification

Linearization Points Example

enq(1)

deq(1)

enq(2)

deq(2)

enq(1) enq(2) deq(1) deq(2)

The trace is linearizable to enq(1) · enq(2) · deq(1) · deq(2).
And also linearizable to enq(1) · deq(1) · enq(2) · deq(2).
And also linearizable to deq(1) · enq(1) · enq(2) · deq(2). (not a
valid Queue sequence)

5 / 31

Introduction Testing Verification

Linearization Points Example

enq(1)

deq(1)

enq(2)

deq(2)

enq(1) enq(2) deq(1) deq(2)

The trace is linearizable to enq(1) · enq(2) · deq(1) · deq(2).
And also linearizable to enq(1) · deq(1) · enq(2) · deq(2).
And also linearizable to deq(1) · enq(1) · enq(2) · deq(2). (not a
valid Queue sequence)

5 / 31

Introduction Testing Verification

Linearization Points Example

enq(1)

deq(1)

enq(2)

deq(2)

enq(1) enq(2) deq(1) deq(2)

The trace is linearizable to enq(1) · enq(2) · deq(1) · deq(2).

And also linearizable to enq(1) · deq(1) · enq(2) · deq(2).
And also linearizable to deq(1) · enq(1) · enq(2) · deq(2). (not a
valid Queue sequence)

5 / 31

Introduction Testing Verification

Linearization Points Example

enq(1)

deq(1)

enq(2)

deq(2)

enq(1) enq(2) deq(1) deq(2)

The trace is linearizable to enq(1) · enq(2) · deq(1) · deq(2).
And also linearizable to enq(1) · deq(1) · enq(2) · deq(2).

And also linearizable to deq(1) · enq(1) · enq(2) · deq(2). (not a
valid Queue sequence)

5 / 31

Introduction Testing Verification

Linearization Points Example

enq(1)

deq(1)

enq(2)

deq(2)

enq(1) enq(2) deq(1) deq(2)

The trace is linearizable to enq(1) · enq(2) · deq(1) · deq(2).
And also linearizable to enq(1) · deq(1) · enq(2) · deq(2).
And also linearizable to deq(1) · enq(1) · enq(2) · deq(2). (not a
valid Queue sequence)

5 / 31

Introduction Testing Verification

Linearization Points

Definition (Linearizability)

A trace t is linearizable with respect to a sequence of operations
w , denoted t v w if, for each operation o, we can find a point
(called linearization point) between the call and return event of o
such that:
the obtained sequence of operations is w .

6 / 31

Introduction Testing Verification

History

Definition (History)

A history h = (O, <) is a strict partial order (irreflexive and
transitive) over a set of operations O.

For a trace t, we define the history hist(t) to be (O, <) where:

• O is the set of operations that appear in t

• for o1, o2 ∈ O, o1 < o2 iff the return event of o1 is before the
call event of o2 in t.

7 / 31

Introduction Testing Verification

History

Definition (History)

A history h = (O, <) is a strict partial order (irreflexive and
transitive) over a set of operations O.

For a trace t, we define the history hist(t) to be (O, <) where:

• O is the set of operations that appear in t

• for o1, o2 ∈ O, o1 < o2 iff the return event of o1 is before the
call event of o2 in t.

7 / 31

Introduction Testing Verification

Example of Trace/History

Thread 1
en
q(

1)
re
t

de
q(

)

de
q(

)

Thread 2

re
t(

1)
en
q(

3)
re
t

en
q(

2)
re
t

re
t(

3)

de
q(

)
re
t(

2)

enq(1)

deq(3)

deq(1)
enq(3)

enq(2)

deq(2)

8 / 31

Introduction Testing Verification

Example of Trace/History

Thread 1
en
q(

1)
re
t

de
q(

)

de
q(

)

Thread 2

re
t(

1)
en
q(

3)
re
t

en
q(

2)
re
t

re
t(

3)

de
q(

)
re
t(

2)

enq(1)

deq(3)

deq(1)
enq(3)

enq(2)

deq(2)

8 / 31

Introduction Testing Verification

Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a history h = (O, <) is linearizable with respect to a
sequence w , denoted h v w if we can obtain w by reordering the
operations of h, while respecting the order <.

< must be a subset of the total order given by w : < ⊆ <w

Definition (Linearizability of a trace)

A trace t is linearizable with respect to w , denoted t v w if
hist(t) is linearizable with respect to w .

9 / 31

Introduction Testing Verification

Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a history h = (O, <) is linearizable with respect to a
sequence w , denoted h v w if we can obtain w by reordering the
operations of h, while respecting the order <.

< must be a subset of the total order given by w : < ⊆ <w

Definition (Linearizability of a trace)

A trace t is linearizable with respect to w , denoted t v w if
hist(t) is linearizable with respect to w .

9 / 31

Introduction Testing Verification

Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a history h = (O, <) is linearizable with respect to a
sequence w , denoted h v w if we can obtain w by reordering the
operations of h, while respecting the order <.

< must be a subset of the total order given by w : < ⊆ <w

Definition (Linearizability of a trace)

A trace t is linearizable with respect to w , denoted t v w if
hist(t) is linearizable with respect to w .

9 / 31

Introduction Testing Verification

Example

enq(1)

deq(3)

deq(1)
enq(3)

enq(2)

deq(2)

Linearizable to: enq(1) · deq(1) · enq(3) · deq(3) · enq(2) · deq(2).

10 / 31

Introduction Testing Verification

Example

enq(1)

deq(3)

deq(1)
enq(3)

enq(2)

deq(2)

Linearizable to: enq(1) · deq(1) · enq(3) · deq(3) · enq(2) · deq(2).

10 / 31

Introduction Testing Verification

Linearizability

Definition (Specification)

A specification S is a set of sequences.

Definition (Linearizability with respect to a specification)

A history h is linearizable with respect to a specification S ,
denoted h v S , if there exists w ∈ S such that h v w .

Definition (Linearizability of a library)

A library L is linearizable with respect to S , denoted L v S if
every history/trace produced by L is linearizable with respect to S .

11 / 31

Introduction Testing Verification

Linearizability

Definition (Specification)

A specification S is a set of sequences.

Definition (Linearizability with respect to a specification)

A history h is linearizable with respect to a specification S ,
denoted h v S , if there exists w ∈ S such that h v w .

Definition (Linearizability of a library)

A library L is linearizable with respect to S , denoted L v S if
every history/trace produced by L is linearizable with respect to S .

11 / 31

Introduction Testing Verification

Linearizability

Definition (Specification)

A specification S is a set of sequences.

Definition (Linearizability with respect to a specification)

A history h is linearizable with respect to a specification S ,
denoted h v S , if there exists w ∈ S such that h v w .

Definition (Linearizability of a library)

A library L is linearizable with respect to S , denoted L v S if
every history/trace produced by L is linearizable with respect to S .

11 / 31

Introduction Testing Verification

Linearizability checking problems

Problem (Testing)

Given a history h, and a specification S , check whether h v S

Problem (Verification)

Given a library L, and a specification S , check whether L v S .
(check h v S for every h in L)

12 / 31

Introduction Testing Verification

Linearizability checking problems

Problem (Testing)

Given a history h, and a specification S , check whether h v S

Problem (Verification)

Given a library L, and a specification S , check whether L v S .
(check h v S for every h in L)

12 / 31

Introduction Testing Verification

Motivation for Testing: Bug-Finding

• Enumerate many traces of a library

• Check for each one, individually, whether it is linearizable

If we find a non-linearizable trace, we found a bug.

Limitation of testing: cannot verify that all the traces of a library
are linearizable (there are infinitely many traces)

13 / 31

Introduction Testing Verification

Motivation for Testing: Bug-Finding

• Enumerate many traces of a library

• Check for each one, individually, whether it is linearizable

If we find a non-linearizable trace, we found a bug.

Limitation of testing: cannot verify that all the traces of a library
are linearizable (there are infinitely many traces)

13 / 31

Introduction Testing Verification

Motivation for Testing: Bug-Finding

• Enumerate many traces of a library

• Check for each one, individually, whether it is linearizable

If we find a non-linearizable trace, we found a bug.

Limitation of testing: cannot verify that all the traces of a library
are linearizable (there are infinitely many traces)

13 / 31

Introduction Testing Verification

Bruteforce Algorithm

Given h = (O, <) and S , check whether h v S :

• If there exists a permutation w of O such that
w respects < and w ∈ S , return true

• Otherwise, return false

Worst case: |O|! permutations to explore

14 / 31

Introduction Testing Verification

Bruteforce Algorithm

Given h = (O, <) and S , check whether h v S :

• If there exists a permutation w of O such that
w respects < and w ∈ S , return true

• Otherwise, return false

Worst case: |O|! permutations to explore

14 / 31

Introduction Testing Verification

Bruteforce Algorithm

Given h = (O, <) and S , check whether h v S :

• If there exists a permutation w of O such that
w respects < and w ∈ S , return true

• Otherwise, return false

Worst case: |O|! permutations to explore

14 / 31

Introduction Testing Verification

Example

enq(1)

deq(3)

deq(1)
enq(3)

enq(2)

deq(2)

Check each of the 6! = 720 permutations.

15 / 31

Introduction Testing Verification

Example

enq(1)

deq(3)

deq(1)
enq(3)

enq(2)

deq(2)

Check each of the 6! = 720 permutations.

15 / 31

Introduction Testing Verification

Example (minor improvement)

enq(1)

deq(3)

deq(1)
enq(3)

enq(2)

deq(2)

Start from the minimal nodes, and only explore linearizations that
respect < and the specification.

16 / 31

Introduction Testing Verification

Example (minor improvement)

enq(1)

deq(3)

deq(1)
enq(3)

enq(2)

deq(2)

Start from the minimal nodes, and only explore linearizations that
respect < and the specification.

16 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix ∈ S be a sequence of
operations and h = (O, <) be a history.

Check if there exists w such that h v w and prefix · w ∈ S .
(coincides with h v S when prefix is empty)

def isLinearizable(prefix: Seq[Operations], h: History):

Boolean = {

h.isEmpty || // if h is empty , we are done!

h.operations.exists { o =>

val newPrefix = prefix · o // add o to the prefix

isMinimal(h,o) &&

newPrefix ∈ S &&

isLinearizable(newPrefix , h - o)

}

}

For a history h, we have h v S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 / 31

Introduction Testing Verification

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97)

Given h and S , checking h v S is NP-complete.

(⇒) No polynomial-time algorithm, unless P = NP

However, there are polynomial-time algorithms if we look at
particular specifications S .

18 / 31

Introduction Testing Verification

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97)

Given h and S , checking h v S is NP-complete.

(⇒) No polynomial-time algorithm, unless P = NP

However, there are polynomial-time algorithms if we look at
particular specifications S .

18 / 31

Introduction Testing Verification

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97)

Given h and S , checking h v S is NP-complete.

(⇒) No polynomial-time algorithm, unless P = NP

However, there are polynomial-time algorithms if we look at
particular specifications S .

18 / 31

Introduction Testing Verification

Testing Problem for Queues

Problem (Linearizability for Queues)

Given a history h, check whether h v Queue.

19 / 31

Introduction Testing Verification

Bad Pattern 1 and Bad Pattern 1’

A dequeue operation with no corresponding enqueue.

• (BP1) a deq(1) such that enq(1) does not exist at all

• (BP1’) two or more deq(1) (this is bad because we assume
enqueues are unique)

20 / 31

Introduction Testing Verification

Bad Pattern 2

Two enqueue’s enq(1) < enq(2) such that deq(2) < deq(1).
(if deq(1) isn’t in the history, we pose that deq(2) < deq(1) holds)

Enq(1) Enq(2)

Deq(2) Deq(1)

21 / 31

Introduction Testing Verification

Bad Pattern 3 (Example A)

A deq(empty) operation covered by pairs of enqueue/dequeue.

deq(empty)

enq(1) deq(1)

22 / 31

Introduction Testing Verification

Bad Pattern 3 (Example B)

A deq(empty) operation covered by pairs of enqueue/dequeue.

deq(empty)

enq(1)

enq(2)

deq(1)

deq(2)

23 / 31

Introduction Testing Verification

Bad Pattern 3 (Example C)

A deq(empty) operation covered by pairs of enqueue/dequeue.

deq(empty)

enq(1)

enq(2)

enq(3)

enq(4)

deq(1)

deq(2)

deq(3)

deq(4)

24 / 31

Introduction Testing Verification

Defining Bad Pattern 3 Formally
Given a history h = (O, <), and some deq(empty) operation in O,
we construct a graph G such that:

• the vertices of G are the values that are enqueued in h and a
vertice for the deq(empty) operation

• there is an edge from v1 to v2 iff
enq(v1) < deq(v2)

• there is an edge from deq(empty) to v iff
deq(empty) < deq(v)

• there is an edge from v to deq(empty) iff
enq(v) < deq(empty)

Definition

The operation deq(empty) is covered iff there is a cycle going
through deq(empty) in the graph.

25 / 31

Introduction Testing Verification

Bad Patterns

• (BP1) a deq(v) such that there exists no enq(v)

• (BP1’) two deq(v) operations (or more)

• (BP2) two enqueue operations dequeued in the wrong order

• (BP3) a deq(empty) operation which is covered

Theorem (Bad Patterns)

Let h be a history (with unique enqueues).
Then h v Queue if and only if
h doesn’t contain one of these bad patterns

26 / 31

Introduction Testing Verification

Bad Patterns

• (BP1) a deq(v) such that there exists no enq(v)

• (BP1’) two deq(v) operations (or more)

• (BP2) two enqueue operations dequeued in the wrong order

• (BP3) a deq(empty) operation which is covered

Theorem (Bad Patterns)

Let h be a history (with unique enqueues).
Then h v Queue if and only if
h doesn’t contain one of these bad patterns

26 / 31

Introduction Testing Verification

Polynomial-time algorithm
We can check in polynomial-time if h has a bad pattern.

Theorem

Let h be a history (with unique enqueues).
We can check h v Queue in polynomial-time.

Proof.

Check for the absence of bad patterns. Each one can be checked in
polynomial-time.

• (BP1) a deq(v) such that there exists no enq(v)

• (BP1’) two deq(v) operations (or more)

• (BP2) two enqueue operations dequeued in the wrong order

• (BP3) a deq(empty) operation which is covered

27 / 31

Introduction Testing Verification

Polynomial-time algorithm
We can check in polynomial-time if h has a bad pattern.

Theorem

Let h be a history (with unique enqueues).
We can check h v Queue in polynomial-time.

Proof.

Check for the absence of bad patterns. Each one can be checked in
polynomial-time.

• (BP1) a deq(v) such that there exists no enq(v)

• (BP1’) two deq(v) operations (or more)

• (BP2) two enqueue operations dequeued in the wrong order

• (BP3) a deq(empty) operation which is covered

27 / 31

Introduction Testing Verification

Limitations of Testing

Checking that h v S one by one, we can never be sure that L v S
A library produces an infinite amount of traces/histories.

28 / 31

Introduction Testing Verification

Herlihy & Wing Queue

var table = Map[Int ,Value]() // represents the queue

var n: Int = 0 // index of the next enqueue

def enqueue(v: Value): Unit = {

synchronized { i = n; n = n + 1 } // atomic operation

table(i) = v

}

def dequeue (): Value = {

while(true) {

val m = n

for (k <- 0 to m-1) {

// get the element at index k, and write null instead

val v = SWAP(table(k), null)

// if not null , return the element

if (v != null)

return v

}

}

}

29 / 31

Introduction Testing Verification

Herlihy & Wing Queue

var table = Map[Int ,Value]() // represents the queue

var n: Int = 0 // index of the next enqueue

def enqueue(v: Value): Unit = {

synchronized { i = n; n = n + 1 } // atomic operation

table(i) = v

}

def dequeue (): Value = {

while(true) {

val m = n

for (k <- 0 to m-1) {

// get the element at index k, and write null instead

val v = SWAP(table(k), null)

// if not null , return the element

if (v != null)

return v

}

}

}

29 / 31

Introduction Testing Verification

Herlihy & Wing Queue

var table = Map[Int ,Value]() // represents the queue

var n: Int = 0 // index of the next enqueue

def enqueue(v: Value): Unit = {

synchronized { i = n; n = n + 1 } // atomic operation

table(i) = v

}

def dequeue (): Value = {

while(true) {

val m = n

for (k <- 0 to m-1) {

// get the element at index k, and write null instead

val v = SWAP(table(k), null)

// if not null , return the element

if (v != null)

return v

}

}

}

29 / 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem

The H&W Queue LH&W is linearizable, i.e. LH&W v Queue.

Proof.
We prove that h v Queue for every h ∈ LH&W . It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

• BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

• BP1’: Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

• BP2: Not possible as the first enqueue operation will be stored at a
smaller index in the table

• BP3: Not possible because dequeue never returns empty

30 / 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem

The H&W Queue LH&W is linearizable, i.e. LH&W v Queue.

Proof.
We prove that h v Queue for every h ∈ LH&W . It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

• BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

• BP1’: Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

• BP2: Not possible as the first enqueue operation will be stored at a
smaller index in the table

• BP3: Not possible because dequeue never returns empty

30 / 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem

The H&W Queue LH&W is linearizable, i.e. LH&W v Queue.

Proof.
We prove that h v Queue for every h ∈ LH&W . It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

• BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

• BP1’: Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

• BP2: Not possible as the first enqueue operation will be stored at a
smaller index in the table

• BP3: Not possible because dequeue never returns empty

30 / 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem

The H&W Queue LH&W is linearizable, i.e. LH&W v Queue.

Proof.
We prove that h v Queue for every h ∈ LH&W . It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

• BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

• BP1’: Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

• BP2: Not possible as the first enqueue operation will be stored at a
smaller index in the table

• BP3: Not possible because dequeue never returns empty

30 / 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem

The H&W Queue LH&W is linearizable, i.e. LH&W v Queue.

Proof.
We prove that h v Queue for every h ∈ LH&W . It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

• BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

• BP1’: Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

• BP2: Not possible as the first enqueue operation will be stored at a
smaller index in the table

• BP3: Not possible because dequeue never returns empty

30 / 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem

The H&W Queue LH&W is linearizable, i.e. LH&W v Queue.

Proof.
We prove that h v Queue for every h ∈ LH&W . It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

• BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

• BP1’: Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

• BP2: Not possible as the first enqueue operation will be stored at a
smaller index in the table

• BP3: Not possible because dequeue never returns empty

30 / 31

Introduction Testing Verification

Summary

• Testing for finding bugs

• Verification for finding bugs or proving correctness

• Checking linearizability for one trace is NP-complete

• But, polynomial-time if we restrict the specification to
Queue/Stack and histories with unique enqueues/pushes

• It is enough to check for bad patterns

• Careful: Stack bad patterns are not symmetric wrt Queue
bad patterns

References:
(1) Aspect-Oriented Linearizability Proofs. Chakraborty et al.
(2) On Reducing Linearizability to State Reachability. Bouajjani et al.

31 / 31

	Introduction
	Testing
	Verification

