Introduction

Testing Verification

Verifying Linearizability

Jad Hamza

EPFL

19 December 2017

0/31

Introduction Testing Verification

Why Linearizability? Ensuring Observational Refinement

@D @D | @ @@ |

R O o Y 1 N
)

[Implementation (L) j [Atomic Queue (S)

1/31

Introduction Testing Verification

Why Linearizability? Ensuring Observational Refinement

@D @D | @ @@ |

R O o Y 1 N

[Implementation (L) j [Atomic Queue (S) j

If the implementation L is linearizable (with respect to an atomic
specification S), then for any user/client program P, we have:

PL] C P[S]

1/31

Introduction Testing Verification

Why Linearizability? Ensuring Observational Refinement

@D @D | @ @@ |

R O o Y 1 N

[Implementation (L) j [Atomic Queue (S) j

If the implementation L is linearizable (with respect to an atomic
specification S), then for any user/client program P, we have:

PL] C P[S]

i.e., P produces less behaviors when using L than when using S

1/31

Introduction Testing Verification

Why Linearizability? Ensuring Observational Refinement

@D @D | @ @@ |

R O o Y 1 N

[Implementation (L) j [Atomic Queue (S) j

If the implementation L is linearizable (with respect to an atomic
specification S), then for any user/client program P, we have:

P[L] € P[§]
i.e., P produces less behaviors when using L than when using S

Application: If we prove a safety property on a program P using an
atomic queue S, we can replace the atomic queue by a (more efficient)
concurrent linearizable implementation L, and the safety property will
still hold. 1/31

Introduction Testing Verification

Events and Trace Example

Thread 2

2/31

Events and Traces

A call event is a tuple with a thread identifier, a method name,
and a parameter.

3/31

Events and Traces

A call event is a tuple with a thread identifier, a method name,
and a parameter.

A return event is a pair with a thread identifier and a return
value.

3/31

Events and Traces

A call event is a tuple with a thread identifier, a method name,
and a parameter.

A return event is a pair with a thread identifier and a return
value.

A trace is a sequence of call and return events. l

3/31

Operation

An operation is a tuple with a thread identifier, a method
name, a parameter and a return value.
(corresponds to a pair of matching call and return events)

4/31

Introduction Testing Verification

Linearization Points Example

enq(1) enq(2)

deq(1) deq(2)

5/31

Introduction Testing Verification

Linearization Points Example

oﬂq(l) . enq(2)

deq(1) deq(2)

5/31

Introduction Testing Verification

Linearization Points Example

enq(1) enq(2)
— .
deq(li) deq(2)
| — —
. “ e .
eng(1) eng(2) deq(1) deq(2)

5/31

Introduction Testing Verification

Linearization Points Example

enq(1) enq(2)
— .
deq(li) deq(2)
| — —
. “ e .
eng(1) eng(2) deq(1) deq(2)

The trace is linearizable to enqg(1) - enq(2) - deq(1) - deq(2).

5/31

Introduction Testing Verification

Linearization Points Example

enq(1) enq(2)
— .
deq(li) deq(2)
| — —
. “ e .
eng(1) eng(2) deq(1) deq(2)

The trace is linearizable to enqg(1) - enq(2) - deq(1) - deq(2).
And also linearizable to enq(1) - deq(1) - enq(2) - deq(2).

5/31

Introduction Testing Verification

Linearization Points Example

enq(1) enq(2)
— .
deq(li) deq(2)
| — —
. “ e .
eng(1) eng(2) deq(1) deq(2)

The trace is linearizable to enqg(1) - enq(2) - deq(1) - deq(2).
And also linearizable to enq(1) - deq(1) - enq(2) - deq(2).

And also linearizable to deq(1) - enq(1) - enq(2) - deg(2). (not a
valid Queue sequence)

5/31

Introduction Testing Verification

Linearization Points

Definition (Linearizability)

A trace t is linearizable with respect to a sequence of operations
w, denoted ¢t C w if, for each operation o, we can find a point
(called linearization point) between the call and return event of o
such that:

the obtained sequence of operations is w.

6/31

History

A history h = (0, <) is a strict partial order (irreflexive and
transitive) over a set of operations O.

7/31

Introduction Testing Verification

History

Definition (History)
A history h = (O, <) is a strict partial order (irreflexive and
transitive) over a set of operations O.

For a trace t, we define the history hist(t) to be (O, <) where:

e O is the set of operations that appear in t
e for 01,00 € O, 01 < 0y iff the return event of 07 is before the
call event of o5 in t.

7/31

Introduction Testing Verification

Example of Trace/History

X

~
O
QO o
o &%

Q QN
& F & &

g EOR\
Thread 1

~
W N
< ()

Thread 2

8 /31

Introduction

Testing Verification

Example of Trace/History

‘\
SRS &
s & ¢ &

N AN
R g

®
Thread 1

N X
@ 9

~
D> R
& & &
AN <

~
N
é}

b @

Thread 2

deq(3) o
eng(1) ./ Nq(z)
DNt

enq(3)

8 /31

Introduction Testing Verification

Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a history h = (O, <) is linearizable with respect to a
sequence w, denoted h T w if we can obtain w by reordering the
operations of h, while respecting the order <.

9/31

Introduction Testing Verification

Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a history h = (O, <) is linearizable with respect to a
sequence w, denoted h T w if we can obtain w by reordering the
operations of h, while respecting the order <.

< must be a subset of the total order given by w: < C <,

9/31

Introduction Testing Verification

Another Definition for Linearizability

Definition (Linearizability of a history)

We say that a history h = (O, <) is linearizable with respect to a
sequence w, denoted h T w if we can obtain w by reordering the
operations of h, while respecting the order <.

< must be a subset of the total order given by w: < C <,

Definition (Linearizability of a trace)

A trace t is linearizable with respect to w, denoted t C w if
hist(t) is linearizable with respect to w.

9/31

Introduction Testing

Example

deq(3) .\dclq(Q)
enq(1) « °
deb‘o—»—»e{q(;)

enq(3)

10/ 31

Introduction Testing Verification

Example

deq(3) .\dclq(Q)
enq(1) « °
deb‘o—»—»e{q(;)

enq(3)

Linearizable to: eng(1) - deq(1) - enq(3) - deq(3) - enq(2) - deq(2).

10/ 31

Linearizability

A specification S is a set of sequences. '

11/31

Linearizability

A specification S is a set of sequences. I

A history h is linearizable with respect to a specification S,
denoted h C S, if there exists w € S such that h C w.

11/31

Introduction Testing Verification

Linearizability

Definition (Specification)

A specification S is a set of sequences.

Definition (Linearizability with respect to a specification)

A history h is linearizable with respect to a specification S,
denoted h C S, if there exists w € S such that h C w.

Definition (Linearizability of a library)

A library L is linearizable with respect to S, denoted L C S if
every history/trace produced by L is linearizable with respect to S.

11/31

Introduction Testing Verification

Linearizability checking problems

Problem (Testing)
Given a history h, and a specification S, check whether hC S J

12 /31

Introduction Testing Verification

Linearizability checking problems

Problem (Testing)
Given a history h, and a specification S, check whether hC S J

Problem (Verification)

Given a library L, and a specification S, check whether LC S.
(check h T S for every h in L)

12 /31

Introduction Testing Verification

Motivation for Testing: Bug-Finding

e Enumerate many traces of a library

e Check for each one, individually, whether it is linearizable

13 /31

Introduction Testing Verification

Motivation for Testing: Bug-Finding

e Enumerate many traces of a library

e Check for each one, individually, whether it is linearizable

If we find a non-linearizable trace, we found a bug.

13 /31

Introduction Testing Verification

Motivation for Testing: Bug-Finding

e Enumerate many traces of a library

e Check for each one, individually, whether it is linearizable

If we find a non-linearizable trace, we found a bug.

Limitation of testing: cannot verify that all the traces of a library
are linearizable (there are infinitely many traces)

13 /31

Introduction Testing Verification

Bruteforce Algorithm

Given h=(0,<) and S, check whether h C S:

14 /31

Introduction Testing Verification

Bruteforce Algorithm

Given h=(0,<) and S, check whether h C S:
o If there exists a permutation w of O such that

w respects < and w € S, return true

e Otherwise, return false

14 /31

Introduction Testing Verification

Bruteforce Algorithm

Given h=(0,<) and S, check whether h C S:

o If there exists a permutation w of O such that
w respects < and w € S, return true

e Otherwise, return false

Worst case: |O|! permutations to explore

14 /31

Introduction

Testing

Example

dGQ(}y‘\diq(Q)
enqg(1) °
’ de%‘o—)o—)-ezq(;)

enq(3)

15 /31

Introduction Testing

Example

dGQ(}y‘\diq(Q)
enqg(1) °
’ de%‘.-»—»e(q(;)

enq(3)

Check each of the 6! = 720 permutations.

15 /31

Introduction

Testing

Example (minor improvement)

deq?\de‘q (2)

enq(1)
deb‘-—»—»%q(z)

enq(3)

16 / 31

Introduction Testing Verification

Example (minor improvement)

deq(3)
\dclqp)
enqg(1) /
RN e)

—>e—>e"cnq(2
enq(3)

Start from the minimal nodes, and only explore linearizations that
respect < and the specification.

16 / 31

Introduction Testing Verification

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

17 /31

Introduction Testing Verification

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

17 /31

Introduction Testing Verification

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def isLinearizable(prefix: Seql[Operations], h: History):
Boolean = {

17 /31

Introduction Testing Verification

Another Bruteforce Algorithm
Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def isLinearizable(prefix: Seql[Operations], h: History):
Boolean = {
h.isEmpty || // if h is empty, we are done!

17 /31

Introduction Testing Verification

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def isLinearizable(prefix: Seql[Operations], h: History):

Boolean = {
h.isEmpty || // if h is empty, we are done!
h.operations.exists { o =>

val newPrefix = prefix - o // add o to the prefix

17 /31

Introduction Testing Verification

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def isLinearizable(prefix: Seql[Operations], h: History):

Boolean = {
h.isEmpty || // if h is empty, we are done!
h.operations.exists { o =>

val newPrefix = prefix - o // add o to the prefix

isMinimal (h,o0) &&

17 /31

Introduction Testing Verification

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def isLinearizable(prefix: Seql[Operations], h: History):

Boolean = {
h.isEmpty || // if h is empty, we are done!
h.operations.exists { o =>

val newPrefix = prefix - o // add o to the prefix

isMinimal (h,o0) &&
newPrefix € S &&

17 /31

Introduction

Testing Verification

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def

h.
h.

isLinearizable(prefix: Seq[Operations], h: History):
Boolean = {

isEmpty || // if h is empty, we are done!
operations.exists { o =>
val newPrefix = prefix - o // add o to the prefix

isMinimal (h,o0) &&
newPrefix € S &&
isLinearizable (newPrefix, h - o)

17 /31

Introduction Testing

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def isLinearizable(prefix: Seql[Operations], h: History):

Boolean = {
h.isEmpty || // if h is empty, we are done!
h.operations.exists { o =>

val newPrefix = prefix - o // add o to the prefix

isMinimal (h,o0) &&
newPrefix € S &&
isLinearizable (newPrefix, h - o)

Verification

17 /31

Introduction

Testing Verification

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def

h.
h.

}
}

isLinearizable(prefix: Seq[Operations], h: History):
Boolean = {

isEmpty || // if h is empty, we are done!
operations.exists { o =>
val newPrefix = prefix - o // add o to the prefix

isMinimal (h,o0) &&
newPrefix € S &&
isLinearizable (newPrefix, h - o)

For a history h, we have h C S iff isLinearizable(Seq(), h) holds.

17 /31

Introduction

Testing Verification

Another Bruteforce Algorithm

Let S be a specification. Let prefix € S be a sequence of
operations and h = (0, <) be a history.

Check if there exists w such that h C w and prefix - w € S.
(coincides with h T S when prefix is empty)

def

h.
h.

}
}

isLinearizable(prefix: Seq[Operations], h: History):
Boolean = {

isEmpty || // if h is empty, we are done!
operations.exists { o =>
val newPrefix = prefix - o // add o to the prefix

isMinimal (h,o0) &&
newPrefix € S &&
isLinearizable (newPrefix, h - o)

For a history h, we have h C S iff isLinearizable(Seq(), h) holds.

Worst case: still |O|! permutations to explore

17 /31

Introduction Testing Verification

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97)
Given h and S, checking h C S is NP-complete. }

18 /31

Introduction Testing Verification

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97)
Given h and S, checking h C S is NP-complete. }

(=) No polynomial-time algorithm, unless P = NP

18 /31

Introduction Testing Verification

Polynomial-Time Algorithm for Testing?

Theorem (Gibbons & Korach 97)
Given h and S, checking h C S is NP-complete. }

(=) No polynomial-time algorithm, unless P = NP

However, there are polynomial-time algorithms if we look at
particular specifications S.

18 /31

Introduction Testing Verification

Testing Problem for Queues

Problem (Linearizability for Queues)
Given a history h, check whether h C Queue. J

19/ 31

Introduction Testing Verification

Bad Pattern 1 and Bad Pattern 1’

A dequeue operation with no corresponding enqueue.
e (BP1) a deq(1) such that eng(1) does not exist at all

e (BP1") two or more deq(1) (this is bad because we assume
enqueues are unique)

20 /31

Introduction Testing Verification

Bad Pattern 2

Two enqueue’s eng(1) < enq(2) such that deq(2) < deq(1).
(if deg(1) isn't in the history, we pose that deq(2) < deq(1) holds)

| 1 |
1 I 1

Eng(1) Enq(2)

Deq(2) Deq(1)

21/31

Introduction Testing Verification

Bad Pattern 3 (Example A)

A deq(empty) operation covered by pairs of enqueue/dequeue.

deq(empty)

enq(1) deq(1)

22 /31

Introduction Testing Verification

Bad Pattern 3 (Example B)

A deq(empty) operation covered by pairs of enqueue/dequeue.

deq(empty)

23 /31

Introduction

Testing

Verification

Bad Pattern 3 (Example C)

A deq(empty) operation covered by pairs of enqueue/dequeue.

deq(empty)
en(1) deq(1)
— } |
eng(2) deq(2)
L i
enq(3) deq(3)
} | —
| enq(4) | deq(4)

24 /31

Introduction Testing Verification

Defining Bad Pattern 3 Formally
Given a history h = (0, <), and some deq(empty) operation in O,
we construct a graph G such that:
o the vertices of G are the values that are enqueued in h and a
vertice for the deq(empty) operation
e there is an edge from vy to v» iff
enq(v1) < deq(vz)
e there is an edge from deq(empty) to v iff
deq(empty) < deq(v)
e there is an edge from v to deq(empty) iff
enq(v) < deq(empty)

Definition

The operation deq(empty) is covered iff there is a cycle going
through deg(empty) in the graph.

25 /31

Introduction Testing Verification

Bad Patterns

BP1) a deqg(v) such that there exists no eng(v)

(

(BP1'") two deq(v) operations (or more)

(BP2) two enqueue operations dequeued in the wrong order
(

BP3) a deq(empty) operation which is covered

26 /31

Introduction Testing Verification

Bad Patterns

(BP1) a deqg(v) such that there exists no eng(v)
(BP1'") two deq(v) operations (or more)
(
(

BP2) two enqueue operations dequeued in the wrong order

BP3) a deq(empty) operation which is covered

Theorem (Bad Patterns)

Let h be a history (with unique enqueues).
Then h C Queue if and only if
h doesn’t contain one of these bad patterns

26 /31

Introduction Testing Verification

Polynomial-time algorithm
We can check in polynomial-time if h has a bad pattern.

Theorem

Let h be a history (with unique enqueues).
We can check h C Queue in polynomial-time.

Proof.
Check for the absence of bad patterns. Each one can be checked in
polynomial-time.
e (BP1) a deqg(v) such that there exists no enqg(v)
e (BP1') two deq(v) operations (or more)
e (BP2) two enqueue operations dequeued in the wrong order
(

BP3) a deq(empty) operation which is covered

27 /31

Introduction Testing Verification

Polynomial-time algorithm
We can check in polynomial-time if h has a bad pattern.

Theorem

Let h be a history (with unique enqueues).
We can check h C Queue in polynomial-time.

Proof.
Check for the absence of bad patterns. Each one can be checked in
polynomial-time.
e (BP1) a deqg(v) such that there exists no enqg(v)
e (BP1') two deq(v) operations (or more)
e (BP2) two enqueue operations dequeued in the wrong order
(

BP3) a deq(empty) operation which is covered

0
27 /31

Introduction Testing Verification

Limitations of Testing

Checking that h = S one by one, we can never be sure that LC S
A library produces an infinite amount of traces/histories.

28 /31

Introduction Testing Verification

Herlihy & Wing Queue

var table = Map[Int,Value] () // represents the queue
var n: Int = 0 // index of the next enqueue

29 /31

Introduction Testing Verification

Herlihy & Wing Queue

var table = Map[Int,Value] () // represents the queue
var n: Int = 0 // index of the next enqueue
def enqueue(v: Value): Unit = {

synchronized { i = n; n = n + 1 } // atomic operation

table(i) = v
}

29 /31

Introduction Testing Verification

Herlihy & Wing Queue

var table = Map[Int,Value] () // represents the queue

var n: Int = 0 // index of the next enqueue
def enqueue(v: Value): Unit = {
synchronized { i = n; n = n + 1 } // atomic operation
table(i) = v
}

def dequeue(): Value = {
while (true) {
val m = n
for (k <- 0 to m-1) {
// get the element at index k, and write null instead
val v = SWAP(table(k), null)
// if not null, return the element
if (v != null)
return v

29 /31

H&W Queue is Linearizable

The H&W Queue Lyg,w Is linearizable, i.e. Lygw T Queue. I

30/31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem
The H&W Queue Lyg,w is linearizable, i.e. Lyg,w T Queue.

Proof.

We prove that h C Queue for every h € Lygw. It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

30 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem
The H&W Queue Lyg,w is linearizable, i.e. Lyg,w T Queue.

Proof.

We prove that h C Queue for every h € Lygw. It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

® BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

30 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem
The H&W Queue Lyg,w is linearizable, i.e. Lyg,w T Queue.

Proof.

We prove that h C Queue for every h € Lygw. It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

® BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

® BP1': Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

30 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem
The H&W Queue Lyg,w is linearizable, i.e. Lyg,w T Queue.

Proof.

We prove that h C Queue for every h € Lygw. It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

® BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

® BP1': Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

® BP2: Not possible as the first enqueue operation will be stored at a
smaller index in the table

30 31

Introduction Testing Verification

H&W Queue is Linearizable

Theorem
The H&W Queue Lyg,w is linearizable, i.e. Lyg,w T Queue.

Proof.

We prove that h C Queue for every h € Lygw. It suffices to prove that h has
no bad pattern. We assume that h has a bad pattern and derive a
contradiction (stetch)

® BP1: Not possible because dequeue always returns values from the map,
and the map always contains values that were previously enqueued.

® BP1': Not possible when assuming unique enqueues, and due to the
atomicity of SWAP.

® BP2: Not possible as the first enqueue operation will be stored at a
smaller index in the table

® BP3: Not possible because dequeue never returns empty

30 31

Introduction Testing Verification

Summary

Testing for finding bugs

Verification for finding bugs or proving correctness

Checking linearizability for one trace is NP-complete

But, polynomial-time if we restrict the specification to
Queue/Stack and histories with unique enqueues/pushes

It is enough to check for bad patterns

Careful: Stack bad patterns are not symmetric wrt Queue
bad patterns

References:
(1) Aspect-Oriented Linearizability Proofs. Chakraborty et al.
(2) On Reducing Linearizability to State Reachability. Bouajjani et al.

31/31

	Introduction
	Testing
	Verification

