
1© R. Guerraoui

Implementing

the Consensus Object

with Timing Assumptions

R. Guerraoui

Distributed Computing Laboratory

2

A modular approach

We implement Wait-free Consensus (Consensus)

through:

Lock-free Consensus (L-Consensus)

and

Registers

We implement L-Consensus through

Obstruction-free Consensus (O-Consensus)

and

<>Leader (encapsulating timing assumptions and

sometimes denoted by )

3

A modular approach

Consensus

L-Consensus

O-Consensus <>Leader

<>Synchrony

Registers

4

Consensus

Wait-Free-Termination: If a correct process proposes,

then it eventually decides

Agreement: No two processes decide differently

Validity: Any value decided must have been proposed

5

L-Consensus

Lock-Free-Termination: If a correct process proposes,

then at least one correct process eventually decides

Agreement: No two processes decide differently

Validity: Any value decided must have been proposed

6

O-Consensus

Obstruction-Free-Termination: If a correct process

proposes and eventually executes alone, then the

process eventually decides

Agreement: No two processes decide differently

Validity: Any value decided must have been proposed

7

Example 1

P2

P1

prop(5) -> 5

prop(0) ->

P3

prop(8) ->

8

Example 2

P2

P1

prop(5) -> 8

P3

prop(0) ->

prop(8) ->

9

O-Consensus algorithm (idea)
A process that is eventually « left alone » to
execute steps, eventually decides

Several processes may keep trying to
concurrently decide until some unknown
time: agreement (and validity) should be
ensured during this preliminary period

10

O-Consensus algorithm (data)
Each process pi maintains a timestamp ts,
initialized to i and incremented by n

The processes share an array of register pairs
Reg1,..,n; each element of the array
contains two registers:

Regi.T contains a timestamp (init to 0)

Regi.V contains a pair
(value,timestamp) (init to (⊥,0))

11

O-Consensus algorithm
(functions)

To simplify the presentation, we assume two
functions applied to Reg1,..,N

highestTsp() returns the highest
timestamp among all elements Reg1.T,
Reg2.T, .., RegN.T

highestTspValue() returns the value with
the highest timestamp among all elements
Reg1.V, Reg2.V, .., RegN.V

12

O-Consensus algorithm

propose(v):

while(true)

Regi.T.write(ts);

val := Reg1,..,n.highestTspValue();

if val = ⊥ then val := v;

Regi.V.write(val,ts);

if ts = Reg1,..,n.highestTsp() then

return(val)

ts := ts + n

13

O-Consensus algorithm

propose(v):

while(true)

(1) Regi.T.write(ts);

(2) val := Reg1,..,n.highestTspValue();

if val = ⊥ then val := v;

(3) Regi.V.write(val,ts);

(4) if ts = Reg1,..,n.highestTsp() then

return(val)

ts := ts + n

14

O-Consensus algorithm

(1) pi announces its timestamp

(2) pi selects the value with the highest
timestamp (or its own if there is none)

(3) pi announces the value with its
timestamp

(4) if pi’s timestamp is the highest, then pi
decides (i.e., pi knows that any process
that executes line 2 will select pi’s value)

15

L-Consensus

We implement L-Consensus using
<>leader (leader()) and the O-Consensus
algorithm

The idea is to use <>leader to make sure
that, eventually, one process keeps
executing steps alone, until it decides

16

<> Leader

▪ One operation leader() which does not take any

input parameter and returns, as an output

parameter, a boolean

▪ A process considers itself leader if the boolean is

true

✓Property: If a correct process invokes leader,

then the invocation returns and eventually,

some correct process is permanently the only

leader

17

Example

P2

P1

leader() -> true

P3

leader() -> true

leader() -> false

leader() -> false

leader() -> false

leader() -> true

18

L-Consensus

propose(v): while(true)

if leader() then

Regi.T.write(ts);

val := Reg1,..,n.highestTspValue();

if val = ⊥ then val := v;

Regi.V.write(val,ts);

if ts = Reg1,..,n.highestTsp()

then return(val)

ts := ts + n

19

From L-Consensus to
Consensus (helping)

• Every process that decides writes its value in a
register Dec (init to ⊥)

• Every process periodically seeks for a value in Dec

20

Consensus

propose(v)

while (Dec.read() = ⊥)

if leader() then

Regi.T.write(ts);

val := Reg1,..,n.highestTspValue();

if val = ⊥ then val := p;

Regi.V.write(val,ts);

if ts = Reg1,..,n.highestTsp()

then Dec.write(val)

ts := ts + n;

return(Dec.read())

21

<> Leader

▪ One operation leader() which does not take any input

parameter and returns, as an output parameter, a

boolean

▪ A process considers itself leader if the boolean is true

✓Property: If a correct process invokes leader, then

the invocation returns and eventually, some correct

process is permanently the only leader

22

<>Leader: algorithm

▪ We assume that the system is <>synchronous

✓ There is a time after which there is a lower and an

upper bound on the delay for a process to execute a

local action, a read or a write in shared memory

✓ The time after which the system becomes

synchronous is called the global stabilization time

(GST) and is unknown to the processes

▪ This model captures the practical observation

that distributed systems are usually synchronous

and sometimes asynchronous

23

<>Leader: algorithm

(shared variables)

▪ Every process pi elects (stores in a local variable

leader) the process with the lowest identity that pi

considers as non-crashed; if pi elects pj, then j < i

▪ A process pi that considers itself leader keeps

incrementing Regi ; pi claims that it wants to remain

leader

▪ NB. Eventually, only the leader keeps incrementing

the shared register Regi

24

<>Leader: algorithm

(local variables)

▪ Every process periodically increments local

variables clock and check, as well as a local

variable delay whenever its leader changes

▪ Process pi maintains lastij to record the last

value of Regj pi has read (pi can hence know

whether pj has progressed)

▪ The next leader is the one with the smallest id

that makes some progress; if no such process pj

such that j<i exists, then pi elects itself

(noLeader is true)

25

<>Leader: algorithm

(variables)

▪ check, and delay are initialized to 1

▪ lastij and Regj are initialized to 0

▪ The next leader is the one with the smallest id

that makes some progress; if no such process pj

such that j<i exists, then pi elects itself

(noLeader is true)

26

<>Leader: algorithm

leader(): return(leader=self)

▪ check, delay and leader init to 1

▪ lastij and Regj init to 0;

▪ Task:

▪ clock := 0;

▪ while(true) do

✓ if (leader=self) then

✓ Regi.write(Regi.read()+1);

✓ clock := clock + 1;

✓ if (clock = check) then

✓ elect();

27

<>Leader: algorithm (cont’d)

elect():

▪ noLeader := true;

▪ for j = 1 to (i-1) do

✓ if (Regj.read() > lastj) then

✓ lastj := Regj.read();

✓ if (leader ≠ pj) then delay:=delay*2;

✓ check := check + delay;

✓ leader:= pj;

✓ noLeader := false; break (for);

▪ if (noLeader) then leader := self;

28

Consensus = Registers + <> Leader

▪ <>Leader has one operation leader() which does

not take any input parameter and returns, as an

output parameter, a boolean; a process considers

itself leader if the boolean is true

✓Property: If a correct process invokes leader, then the

invocation returns and eventually, some correct

process is permanently the only leader

▪ <>Leader encapsulates the following synchrony

assumption: there is a time after which a lower

and an upper bound hold on the time it takes for

every process to execute a step (eventual

synchrony)

29

Minimal Assumptions

▪ Consensus is impossible in an asynchronous

system with Registers (FLP83, LA88)

▪ Consensus is possible in an eventually

synchronous system (i.e., <> Leader) with

Registers (DLS88, LH95)

▪ What is the minimal synchrony assumption

needed to implement Consensus with Registers?

▪ Is there any weaker timing abstraction than

<>Leader that helps Registers solve Consensus

