
Concurrent Algorithms October 8, 2018

Exercise 2

Problem 1. Explain the difference between a regular register and an atomic register. Provide an example
execution that is allowed for a regular register but not allowed for an atomic register.

Problem 2. Consider the transformation from binary regular to M-valued MRSW regular registers given
in class. Prove that if the Write operation would first write 0, and then 1, the transformation would not
work (by providing a counterexample that breaks regularity).

Problem 3. Consider the transformation from SRSW regular to SRSW atomic registers given in class.
Prove that if you replace the base registers (SRSW regular registers) by MRSW regular registers, your algo-
rithm does not yield an MRSW atomic register (by providing a counterexample that breaks atomicity).

Problem 4. A splitter is a shared object that has only one operation, called splitter, that can return stop, left
or right. Every splitter object ensures the following properties:

1. If a single process executes splitter, then the process is returned stop;

2. If two or more processes execute splitter, then not all of them get the same output value; and

3. At most one process is returned stop.

Your task is to implement a wait-free, atomic splitter object using only atomic (multi-valued, MRMW) reg-
isters. (Assume that each process invokes splitter only once. If two or more processes execute splitter, then
they may execute concurrently or one after another. In both cases, the properties above should be ensured.)

Problem 5. The snapshot algorithm presented in the lecture has step complexity that is a function of the
number of processes n. That is, in the worst case, a process needs f (n) steps to complete a single update or
scan operation, where f is some function.

Imagine a situation where n is very large but usually only a few processes use a snapshot object. In such
a scenario, it would be best to have a snapshot implementation which step complexity is not a function of
n but of the number of processes that use the shared object.

Your task is to write such an algorithm. More precisely, you should devise an algorithm for a (wait-free,
atomic) snapshot object such that the step complexity of its update and scan operations is f (k), where k is
the number of processes that ever invoked either of the operations (in the current execution) and f is some
function independent of n.

p-1


