
Concurrent Algorithms November 20, 2018

Solutions to Exercise 6

Problem 1. We perform our proof by contradiction. Assume there exists an algorithm B that implements

a C&S object using base C&S objects one of which can be non-responsive.

Figure 1 presents the idea behind our proof. We show that we can implement C&S objects one of which

can be non-responsive just by using read-write registers (A). Furthermore, we show that we can get con-

sensus out of using a single reliable C&S object (C). Therefore, if an algorithm B existed such that we

could implement a reliable C&S object out of C&S objects where one can be non-responsive, we could also

implement consensus out of read-write registers, hence a contradiction.

read-write registers

C&S objects (≤ 1 non-responsive) reliable C&S

consensus

can implement (A)

can implement? (B)

can implement (C)

Figure 1: Idea behind the proof: If we could implement (B), we could get consensus out of resigters, a contradiction.

We consider a model with n processes where at most one process can crash. Furthermore, we consider

that in every infinite execution, every non-crashed process takes an infinite number of steps. Notice that

in such a model, we cannot devise an algorithm where consensus is guaranteed to terminate (see the “The

Limitations of Registers” lecture) just by using read-write registers.

We present implementations for algorithms (A) and (C) below.

(A) From registers to non-responsive C&S: Each of n processes emulates one base C&S object.

The processes share a 2-dimensional array CS of registers. When process i wants to invoke the CAS operation

of C&S object x it invokes the following:

upon CASx(oldval,newval)i do

CS[x][i]← (invocation, oldval,newval)

wait until CS[x][i] = (response, retval)

return retval

Since one of the processes can fail, its corresponding C&S object becomes non-responsive. Each process

i reads invocations from locations CS[i][∗] and applies them:

p-1

parallel task Ci

initially: q = ⊥ (local variable)

while true do

for j ← 1 to n do

(type, oldval,newval)← CS[i][j]

if type = invocation then

if q = oldval then q ← newval

CS[i][j]← (response, q)

Notice, that the presented algorithm does not provide wait-free implementations of C&S objects. How-

ever, in an infinite execution, all except the potentially non-responsive C&S will respond back.

(C) From non-faulty (i.e., reliable) C&S to consensus: A process pi that proposes a value, writes

the value in a register R[i] and waits until a decided value is written in register D:

initially: D = ⊥, R[1, . . . , N] = ⊥

upon proposei(v) do

R[i]← v

wait until D 6= ⊥
return D

Each of the n processes then runs the following task in parallel and uses the hypothetical reliable C&S

object.

parallel task Consi

wait until some value v 6= ⊥ is written in some register R[j]

call CAS(⊥, v) on the reliable C&S object

D ← value returned by the CAS

Problem 2. We use 2t+1 base registers, so that always majority is correct. Read/write from/to majority

of registers.

uses: R[1, . . . , 2t+ 1] – SWMR registers t of which can be non-responsive

upon write1(v) do

ts← ts + 1

invoke write1(ts, v) on all R[1, . . . , 2t+ 1]

wait for t+ 1 responses

upon readi do

invoke readi(v) on all R[1, . . . , 2t+ 1]

wait for t+ 1 responses

return the value v with the highest timestamp ts

The presented algorithm implements a regular SWMR register. However, a regular register can be trans-

p-2

formed into an atomic one (see the lecture slides about register transformations).

Problem 3. The following algorithm solves the problem:

uses: C0, C1 – counters

upon propose(v) do

while true do

(x0, x1)← readCounters()

if x0 > x1 then v ← 0

else if x1 > x0 then v ← 1

if |x0 − x1| ≥ n then return v

Cv.inc()

The readCounters procedure atomically reads both counters C0 and C1. It can be implemented as follows:

upon readCounters() do

while true do

x0 ← C0.read()

x1 ← C1.read()

x′0 ← C0.read()

if x0 = x′0 then return (x0, x1)

Problem 4. The answer is yes. To justify this, we show linearizability and termination still hold. For

linearizability, we need only to justify the return value of the replaced condition. Consider the first scan s

which returns on this condition. (The “first” scan refers to when the scan starts.) Since the timestamp τ

of the snapshot ret returned by s is no less than ts (which is obtained at the beginning of s), therefore the

wInc procedure which returns τ (denoted by wInc1) cannot end before the wInc procedure which returns ts

(denoted by wInc2) starts, by the property of the weak counter. In other words, wInc1 ends no earlier than

wInc2 starts. Thus the call of scan (denoted by sret) inside the update which writes ret ends no earlier than

s starts. I.e., two scans s and sret are concurrent. As a result, s can be linearized at the same point as sret.

Since sret returns a linearizable value, then s also returns a linearizable value. We can extend the reasoning

to infinity by induction. For termination, it is easy to see that now the implementation has more chances to

return, and therefore must satisfy termination (as the original implementation satisfies termination).

p-3

