Concurrent Algorithms

December 4, 2018

Exercise 8

Problem 1. In this problem, we consider a system of *n* processes.

An (m, n)-assignment object, where $n \ge m > 1$, has n fields (for instance, an n-element array) and two operations: assign() and read(). The assign() operation takes as arguments m values $v_1, ..., v_m$ and m indices $i_1, ..., i_m$ and atomically assigns value v_j to array element i_j , for j = 1, ..., m. Note: the entire sequence of m assignments is atomic. The read() operation takes an index argument i and returns the ith array element.

Your task is to prove that atomic $(n, \frac{n(n+1)}{2})$ -assignment objects, where n > 1, have consensus number at least n.