
Concurrent Algorithms
&

Memory
Concurrent Algorithms

Fall 2018
Igor Zablotchi

[Some slides courtesy of Tudor David]

Introduction
• This lecture is about memory in how it relates to
concurrent computing
• So far, we have assumed that memory is:
• Infinite
• Volatile

• These assumptions need not be true:
• Infinite -> Finite -> Memory reclamation
• Volatile -> Persistent

• Both topics of ongoing research (my thesis)

2

Concurrent Data Structures

3

Lists

Trees

Hash tables

Skip lists

Part 1
Concurrent Memory
Reclamation

4

What is Memory Reclamation (MR)?

• Applications need memory
• Most realistic applications grow and shrink in
memory
• Grow = allocate memory
• Shrink = free no-longer-useful memory

5

What is Memory Reclamation (MR)?

6

ds = new_data_structure(…);
node n = new_node(…);
insert(ds, n);
// use n in some way
remove(ds,n);

Need to free n!

Freeing Memory is Necessary

• Otherwise, applications might run out of memory
or use too much memory

7

Automatic Garbage Collection
• Some languages (e.g., Java) have automatic
memory management
• Memory is allocated & freed without explicit
programmer intervention
• Garbage collector decides automatically when a
pointer should be freed

8

Explicit Memory Management
• Other languages (e.g., C, C++) require the
programmer to allocate & free memory explicitly
• Programmer needs to determine when to free
some memory location
• This is our focus for this class

9

1-process MR is Easy
• Allocate some memory
• Use it
• Free after last use

10

1-process MR is Easy

O1

Process P2

O2 O3 ……

Use O1
Remove O1
Free O1

11

Concurrent MR is Difficult
• No easy way for a process to determine if a
memory location will be used later by a different
process

12

Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Use O1
Remove O1

13

Concurrent MR is Difficult

About to
read O1

O1

Process P1 Process P2

O2 O3 ……

14

Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Free O1 ?About to
read O1

15

Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Free O1 !About to
read O1

16

Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Error!

17

Take-away So Far
• Memory reclamation = deciding when to free
memory
• Necessary:
• Most applications need to allocate + free
• C, C++ are here to stay
• No MR → excessive memory use

• Challenging (concurrent case):
• Need a way to determine when all processes are done
with some memory location

18

A Few MR Techniques

• Lock-free Reference Counting

• Hazard Pointers

• Epoch-Based Reclamation

19

Lock-free Reference Counting
• Main idea:
• For each memory location, keep track of how many
references are held to it.
• When there are 0 references, safe to reclaim.

20

LFRC Example

O1 O2 O3 ……

1 1 1Reference count

A linked list. No process has references. Each node
has reference count = 1 (the reference from the

previous node in the list).

21

LFRC Example

O1

Process P2

O2 O3 ……

2 1 1

A thread is reading. The node that the thread is
currently looking at has reference count = 2. 22

LFRC Example

O1

Process P2

O2 O3 ……

1 2 1

A thread is reading. The node that the thread is
currently looking at has reference count = 2. 23

LFRC Example

O1

Process P2

O2 O3 ……

1 1 2

A thread is reading. The node that the thread is
currently looking at has reference count = 2. 24

LFRC Example

O1 O2

O3

……

1 1

1

A thread has removed node O3 from the list. O3 now has
reference count = 1 (the reference from the thread). 25

Process P2

LFRC Example

O1 O2

O3

……

1 1

0

The thread has released its reference to O3. O3 now has
0 references. Its memory can be freed. 26

Pros and cons of LFRC
✓ Lock-free (wait-free version exists)
✓ Easy to understand & implement

✘ Need to update reference counter on every
access, even if read-only → bad performance

✘ Update of reference counter requires expensive
atomic instructions → extremely bad
performance!

27

Hazard Pointers (HP)
• Main idea:
• Each process announces memory locations it plans to
access: hazard pointers
• Processes only free memory that is not protected by
hazard pointers

28

Hazard Pointers (HP)

29

O1

Process P1 Process P2

O2 O3 ……

Hazard Pointers (HP)

30

O1

Process P1 Process P2

O2 O3 ……

HP

Don’t free O1,
I’m about to

use it.

Hazard Pointers (HP)

31

HP

O1

Process P1 Process P2

O2 O3 ……
Don’t free O1,
I’m about to

use it. I’d better not
free O1, T1 is

using it.

HP –More Details
0. Reachability
• Reachable node = can be found by following pointers
from data structure root(s)

32

O1 O3

O2

Before inserting
→ O2 not yet reachable

O1 O3O2

In the data structure
⬄O2 reachable

O1 O3

O2

After deletion
→ O2 no longer reachable

HP –More Details
1. Announcing hazard pointers

33

Without hazard pointers With hazard pointers

1. Read a reference p
2. Do something with p
3. (Release reference to p)

1. Read a reference p
2. HP = p // protect p
3. Check if p is still

reachable. If yes,
continue, otherwise
restart operation.

4. Do something with p
5. (Release reference to p)

HP –More Details
2. Deleting elements

• Each process has a “limbo list” containing nodes
that have been deleted but not yet freed
• After process pideletes a node n from the data
structure, it adds n to pi’s limbo list

34

HP –More Details
3. Reclaiming memory

• When the limbo list grows to a certain size R, pi
initiates a scan:
• For each node n in the limbo list:

• Look at HPs of all processes. Is any of them pointing to n?
• If not, free n’s memory
• (If yes, do nothing)

35

Pros and Cons of HP

✓ Limits memory use
✓ Lock-free

✘ Need to update HP on every access, even if
read-only → bad performance

✘ Complex to implement & use → prone to errors

36

Epoch-based Reclamation (EBR)
• Main idea:
• Processes keep track of each other’s progress
• After deleting an object, when all processes have made
enough progress, memory can be freed

37

EBR, Step by Step
• Step 1: processes declare when they enter & exit
critical sections

38

// code
enter_critical_section();
// more code
exit_critical_section();
// even more code

Here, we may access
“dangerous” memory

(memory that can be freed)

Here, only safe memory
accesses are allowed

(memory that is never freed)

EBR, Step by Step
• Step 2: each process has an epoch (an integer,
initially 0). The epoch is incremented by 1 when
entering and exiting a critical section.

→ epoch is odd if inside critical section and even otherwise
39

// code
enter_critical_section();
// more code
exit_critical_section();
// even more code

epoch = 0

epoch = 1

epoch = 2

EBR, Step by Step
• Step 3: After deleting an element, add it to a per-
process limbo list, together with current epochs of
all processes

40

O1 1 3 4 2 5 7,
O3 3 4 8 2 7 7,

…

Limbo list

Node epoch vector
Node

EBR, Step by Step
• Step 4: Periodically scan limbo list

41

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

EBR, Step by Step
• Step 4: Periodically scan limbo list

42

O3 3 4 8 2 7 7,

Only care about odd entries
(processes inside crit. sec.)!
Processes outside crit. sec.
cannot access this node.

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

EBR, Step by Step
• Step 4: Periodically scan limbo list

43

O3 3 4 8 2 7 7,

5 4 8 4 9 8

OK to reclaim!

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

Current
Epoch vector

EBR, Step by Step
• Step 4: Periodically scan limbo list

44

O3 3 4 8 2 7 7,

3 4 8 4 9 9

Not OK to reclaim!

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

Current
Epoch vector

Pros and Cons of EBR

✓ Small overhead → very good performance
✓ Easy to use

✘ Blocking (not lock-free)
→ can invalidate lock- or wait-freedom of data structure
→ if some process is delayed inside a critical section,

memory cannot be reclaimed any more

45

Part 2
Persistent Memory

46

What Is Persistent Memory?

47

Access times ~ RAM

Byte 42

Byte 43

Byte-addressability

Durability in the face of
crashes & recoveries

☞ Concurrent data structures for PM

Obstacle #1: Caches are Volatile

48

Processor
Caches

Persistent Memory

Volatile Non-Volatile

Obstacle #2: (Re-)ordering

49

Processor
Caches

Persistent Memory

Obstacles Illustrated

50

1: mark memory as allocated
2: initialize memory
3: change link of node 1
4: change link of node 2
5: done = 1

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1

crash

Upon restart: incorrect state

Obstacles Illustrated

51

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1

crash

Upon restart: incorrect state

1: mark memory as allocated
2: persist allocation
3: initialize memory
4: persist memory content
5: change link of node 1
6: persist new link
7: change link of node 2
8: persist modified link
9: done = 1

Obstacles Illustrated

52

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:
1: mark allocation
2: initialize mem
3: change link 1crash

Upon restart: incomplete operation

1: mark memory as allocated
2: persist allocation
3: initialize memory
4: persist memory content
5: change link of node 1
6: persist new link
7: change link of node 2
8: persist modified link
9: done = 1

Common Solution: Logging

53

1: log[0] = starting transaction X
2: persist log[0]
3: log[1] = allocating a node at address A
4: persist log[1]
5: mark memory as allocated
6: persist allocation
7: initialize memory
8: persist memory content
9: log[2] = previous value of link
10: persist log[2]
11: change link 1
12: persist modified link
13: log[3] = previous value of link
14: persist log[3]
15: change link 2
16: persist modified link
17: done = 1
18: persist done
19: mark transaction X as finished

Frequent waiting for data to be persisted

The Problem with Logging
• Logging -> frequent waiting
• slows down data structure performance

• Data structure performance is essential to overall
system performance

54

The solution: reduce (or eliminate) logging

Log-free Data Structures
• The main idea: use lock-free algorithms
• They never leave the structure in an inconsistent state
• No need for logging in the data structure algorithm

55

Detour: Durable Linearizability
• After a restart, the structure reflects:
• all operations completed (linearized) before the crash;
• (potentially) some operations that were ongoing when

the crash occurred;

56

persist

1. Persistently allocate and initialize node
2. Add link to new node
3. Persist link to new node

If crash between
steps 2 and 3,

violation of durable
linearizability

Log-free Data Structures

57

persist

1. Persistently allocate and initialize node
2. Add marked link to new node
3. Persist link to new node
4. Remove mark

Other threads - persist marked link if needed

Link-and-persist: atomic “modify” and “persist” link

Going Further: Batching

58

CLWB A
CLWB B

CLWB C

Batching write-backs:
beneficial for performance

time

cache line write-back

store fence

Going Further: Batching
• A link only needs to be persisted when an operation
depends on it
• Store all un-persisted links in a fast concurrent cache
• When an operation directly depends on a link in the cache:

batch write-backs of all links in the cache
(and empty the cache)

59

key 1 link addr1

key z link addr z

key y link addr y

Insert(X) X link addr X

Read(X)

…
write-back all links

link cache

YouCan’t Eliminate Fences
• For any lock-free concurrent implementation of a
persistent object
• there exists an execution E such that
• in E, every update operation performs at least 1
persistent fence

60

Lower Bound: Sequential Case

61

p1

p2

p3

update

update

update

Lower Bound: Sequential Case

62

p1 ✘

p2 ✘

p3 ✘

update

crash

update

update

Lower Bound: Sequential Case

63

p1 ✘

p2 ✘

p3 ✘

update

crash

if (result = SUCCESS) {
print(“Done”);

}
update

update

Lower Bound: Sequential Case

64

p1 ✘

p2 ✘

p3 ✘

update

update

update
crash

Need at least 1 persistent fence for every update.

Lower Bound: Concurrent Case

65

p1 update

p2 update

Lower Bound: Concurrent Case

66

p1 update

p2 update

I’ll just let p1
perform the

fence for both
of us

Lower Bound: Concurrent Case

67

p1 update

p2 update

! delayed before fence

Lower Bound: Concurrent Case

68

p1 update

p2 update

! delayed before fence

Needs to perform its
own fence

Lower Bound: Concurrent Case

69

p1 update

p2 update

! delayed before fence

Needs to perform its
own fence

Both processes perform one fence per update operation.

Further Reading
• T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Performance of memory

reclamation for lockless synchronization. Journal of Parallel and Distributed Computing,
67(12), 2007.

• J. D. Valois. Lock-free linked lists using compare-and-swap. PODC 1995.
• M.M. Michael, M.L. Scott. Correction of a memory management method for lock-free

data structures. Technical Report TR599, Computer Science Department, University of
Rochester. 1995.

• D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele, Jr. Lock-free reference counting.
PODC 2001.

• M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst., 15(6), 2004.

• O. Balmau, R. Guerraoui, M. Herlihy, and I. Zablotchi. Fast and Robust Memory
Reclamation for Concurrent Data Structures. SPAA 2016.

• T. David, A. Dragojevic, R. Guerraoui, and I. Zablotchi. Log-Free Concurrent Data
Structures. USENIX ATC 2018

• N. Cohen, R. Guerraoui, and I. Zablotchi. The Inherent Cost of Remembering
Consistently. SPAA 2018

70

