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Introduction
• This lecture is about memory in how it relates to 
concurrent computing
• So far, we have assumed that memory is:
• Infinite
• Volatile

• These assumptions need not be true:
• Infinite -> Finite -> Memory reclamation
• Volatile -> Persistent

• Both topics of ongoing research (my thesis)
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Concurrent Data Structures
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Lists

Trees

Hash tables

Skip lists



Part 1
Concurrent Memory 
Reclamation
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What is Memory Reclamation (MR)?

• Applications need memory
• Most realistic applications grow and shrink in 
memory
• Grow = allocate memory
• Shrink = free no-longer-useful memory
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What is Memory Reclamation (MR)?

6

ds = new_data_structure(…);
node n = new_node(…);
insert(ds, n);
// use n in some way
remove(ds,n);

Need to free n!



Freeing Memory is Necessary

• Otherwise, applications might run out of memory 
or use too much memory
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Automatic Garbage Collection
• Some languages (e.g., Java) have automatic 
memory management
• Memory is allocated & freed without explicit 
programmer intervention
• Garbage collector decides automatically when a 
pointer should be freed
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Explicit Memory Management
• Other languages (e.g., C, C++) require the 
programmer to allocate & free memory explicitly
• Programmer needs to determine when to free 
some memory location
• This is our focus for this class
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1-process MR is Easy
• Allocate some memory
• Use it
• Free after last use
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1-process MR is Easy

O1

Process P2

O2 O3 ……

Use O1
Remove O1
Free O1
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Concurrent MR is Difficult
• No easy way for a process to determine if a 
memory location will be used later by a different 
process
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Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Use O1
Remove O1
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Concurrent MR is Difficult

About to 
read O1

O1

Process P1 Process P2

O2 O3 ……
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Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Free O1 ?About to 
read O1
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Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Free O1 !About to 
read O1
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Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Error!
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Take-away So Far
• Memory reclamation = deciding when to free 
memory
• Necessary:
• Most applications need to allocate + free
• C, C++ are here to stay
• No MR → excessive memory use

• Challenging (concurrent case):
• Need a way to determine when all processes are done 
with some memory location
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A Few MR Techniques

• Lock-free Reference Counting

• Hazard Pointers

• Epoch-Based Reclamation
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Lock-free Reference Counting
• Main idea: 
• For each memory location, keep track of how many 
references are held to it.
• When there are 0 references, safe to reclaim.
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LFRC Example

O1 O2 O3 ……

1 1 1Reference count

A linked list. No process has references. Each node 
has reference count = 1 (the reference from the 

previous node in the list).
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LFRC Example

O1

Process P2

O2 O3 ……

2 1 1

A thread is reading. The node that the thread is 
currently looking at has reference count = 2. 22



LFRC Example

O1

Process P2

O2 O3 ……

1 2 1

A thread is reading. The node that the thread is 
currently looking at has reference count = 2. 23



LFRC Example

O1

Process P2

O2 O3 ……

1 1 2

A thread is reading. The node that the thread is 
currently looking at has reference count = 2. 24



LFRC Example

O1 O2

O3

……

1 1

1

A thread has removed node O3 from the list. O3 now has 
reference count = 1 (the reference from the thread).  25

Process P2



LFRC Example

O1 O2

O3

……

1 1

0

The thread has released its reference to O3. O3 now has 
0 references. Its memory can be freed. 26



Pros and cons of LFRC
✓ Lock-free (wait-free version exists)
✓ Easy to understand & implement

✘ Need to update reference counter on every 
access, even if read-only → bad performance

✘ Update of reference counter requires expensive 
atomic instructions → extremely bad 
performance!
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Hazard Pointers (HP)
• Main idea: 
• Each process announces memory locations it plans to 
access: hazard pointers
• Processes only free memory that is not protected by 
hazard pointers
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Hazard Pointers (HP)
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O1

Process P1 Process P2

O2 O3 ……



Hazard Pointers (HP)
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O1

Process P1 Process P2

O2 O3 ……

HP

Don’t free O1,
I’m about to 

use it.



Hazard Pointers (HP)
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HP

O1

Process P1 Process P2

O2 O3 ……
Don’t free O1,
I’m about to 

use it. I’d better not 
free O1, T1 is 

using it.



HP –More Details
0.   Reachability
• Reachable node = can be found by following pointers 
from data structure root(s)
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O1 O3

O2

Before inserting 
→ O2 not yet reachable 

O1 O3O2

In the data structure 
⬄O2 reachable

O1 O3

O2

After deletion
→ O2 no longer reachable 



HP –More Details
1. Announcing hazard pointers
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Without hazard pointers With hazard pointers

1. Read a reference p
2. Do something with p
3. (Release reference to p)

1. Read a reference p
2. HP = p // protect p
3. Check if p is still 

reachable. If yes, 
continue, otherwise 
restart operation.

4. Do something with p
5. (Release reference to p)



HP –More Details
2. Deleting elements

• Each process has a “limbo list” containing nodes 
that have been deleted but not yet freed
• After process pideletes a node n from the data 
structure, it adds n to pi’s limbo list
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HP –More Details
3. Reclaiming memory

• When the limbo list grows to a certain size R, pi 
initiates a scan:
• For each node n in the limbo list:

• Look at HPs of all processes. Is any of them pointing to n?
• If not, free n’s memory
• (If yes, do nothing)

35



Pros and Cons of HP

✓ Limits memory use
✓ Lock-free

✘ Need to update HP on every access, even if 
read-only → bad performance

✘ Complex to implement & use → prone to errors
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Epoch-based Reclamation (EBR)
• Main idea:
• Processes keep track of each other’s progress
• After deleting an object, when all processes have made 
enough progress, memory can be freed
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EBR, Step by Step
• Step 1: processes declare when they enter & exit 
critical sections
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// code
enter_critical_section();
// more code
exit_critical_section();
// even more code

Here, we may access 
“dangerous” memory 

(memory that can be freed)

Here, only safe memory 
accesses are allowed 

(memory that is never freed)



EBR, Step by Step
• Step 2: each process has an epoch (an integer, 
initially 0). The epoch is incremented by 1 when 
entering and exiting a critical section.

→ epoch is odd if inside critical section and even otherwise
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// code
enter_critical_section();
// more code
exit_critical_section();
// even more code

epoch = 0

epoch = 1

epoch = 2



EBR, Step by Step
• Step 3: After deleting an element, add it to a per-
process limbo list, together with current epochs of 
all processes 
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O1 1 3 4 2 5 7,
O3 3 4 8 2 7 7,

…

Limbo list

Node epoch vector
Node



EBR, Step by Step
• Step 4: Periodically scan limbo list
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Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node



EBR, Step by Step
• Step 4: Periodically scan limbo list
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O3 3 4 8 2 7 7,

Only care about odd entries 
(processes inside crit. sec.)! 
Processes outside crit. sec. 
cannot access this node.

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node



EBR, Step by Step
• Step 4: Periodically scan limbo list
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O3 3 4 8 2 7 7,

5 4 8 4 9 8

OK to reclaim!

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

Current 
Epoch vector



EBR, Step by Step
• Step 4: Periodically scan limbo list
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O3 3 4 8 2 7 7,

3 4 8 4 9 9

Not OK to reclaim!

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

Current 
Epoch vector



Pros and Cons of EBR

✓ Small overhead → very good performance
✓ Easy to use

✘ Blocking (not lock-free) 
→ can invalidate lock- or wait-freedom of data structure
→ if some process is delayed inside a critical section, 

memory cannot be reclaimed any more
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Part 2
Persistent Memory
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What Is Persistent Memory?
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Access times ~ RAM

Byte 42

Byte 43

Byte-addressability

Durability in the face of 
crashes & recoveries

☞ Concurrent data structures for PM



Obstacle #1: Caches are Volatile
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Processor
Caches

Persistent Memory

Volatile Non-Volatile



Obstacle #2: (Re-)ordering
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Processor
Caches

Persistent Memory



Obstacles Illustrated
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1: mark memory as allocated
2: initialize memory
3: change link of node 1
4: change link of node 2
5: done = 1

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1

crash

Upon restart: incorrect state



Obstacles Illustrated
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Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1

crash

Upon restart: incorrect state

1: mark memory as allocated
2: persist allocation
3: initialize memory
4: persist memory content
5: change link of node 1
6: persist new link
7: change link of node 2
8: persist modified link
9: done = 1



Obstacles Illustrated
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Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:
1: mark allocation
2: initialize mem
3: change link 1crash

Upon restart: incomplete operation

1: mark memory as allocated
2: persist allocation
3: initialize memory
4: persist memory content
5: change link of node 1
6: persist new link
7: change link of node 2
8: persist modified link
9: done = 1



Common Solution: Logging
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1: log[0] = starting transaction X
2: persist log[0]
3: log[1] = allocating a node at address A
4: persist log[1]
5: mark memory as allocated
6: persist allocation
7: initialize memory
8: persist memory content
9: log[2] = previous value of link
10: persist log[2]
11: change link 1
12: persist modified link
13: log[3] = previous value of link
14: persist log[3]
15: change link 2
16: persist modified link
17: done = 1
18: persist done
19: mark transaction X as finished

Frequent waiting for data to be persisted



The Problem with Logging
• Logging -> frequent waiting 
• slows down data structure performance

• Data structure performance is essential to overall 
system performance
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The solution: reduce (or eliminate) logging



Log-free Data Structures
• The main idea: use lock-free algorithms 
• They never leave the structure in an inconsistent state
• No need for logging in the data structure algorithm
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Detour: Durable Linearizability
• After a restart, the structure reflects:
• all operations completed (linearized) before the crash;
• (potentially) some operations that were ongoing when 

the crash occurred; 
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persist

1. Persistently allocate and initialize node
2. Add link to new node
3. Persist link to new node

If crash between 
steps 2 and 3, 

violation of durable 
linearizability



Log-free Data Structures
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persist

1. Persistently allocate and initialize node
2. Add marked link to new node
3. Persist link to new node
4. Remove mark

Other threads - persist marked link if needed

Link-and-persist: atomic “modify” and “persist” link



Going Further: Batching
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CLWB A
CLWB B

CLWB C

Batching write-backs: 
beneficial for performance

time

cache line write-back

store fence



Going Further: Batching
• A link only needs to be persisted when an operation 
depends on it
• Store all un-persisted links in a fast concurrent cache
• When an operation directly depends on a link in the cache:

batch write-backs of all links in the cache 
(and empty the cache)
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key 1 link addr1

key z link addr z

key y link addr y

Insert(X) X link addr X

Read(X)

…
write-back all links

link cache



YouCan’t Eliminate Fences
• For any lock-free concurrent implementation of a 
persistent object
• there exists an execution E such that
• in E, every update operation performs at least 1 
persistent fence
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Lower Bound: Sequential Case
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p1

p2

p3

update

update

update



Lower Bound: Sequential Case
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p1 ✘

p2 ✘

p3 ✘

update

crash

update

update



Lower Bound: Sequential Case
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p1 ✘

p2 ✘

p3 ✘

update

crash

if (result = SUCCESS) {
print(“Done”);

}
update

update



Lower Bound: Sequential Case

64

p1 ✘

p2 ✘

p3 ✘

update

update

update
crash

Need at least 1 persistent fence for every update.



Lower Bound: Concurrent Case

65

p1 update

p2 update



Lower Bound: Concurrent Case
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p1 update

p2 update

I’ll just let p1 
perform the 

fence for both 
of us



Lower Bound: Concurrent Case
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p1 update

p2 update

! delayed before fence



Lower Bound: Concurrent Case

68

p1 update

p2 update

! delayed before fence

Needs to perform its 
own fence



Lower Bound: Concurrent Case
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p1 update

p2 update

! delayed before fence

Needs to perform its 
own fence

Both processes perform one fence per update operation.
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