
Concurrent Algorithms 2018

Midterm Exam

November 26th, 2018

Time: 1h45

Instructions:

• This midterm is “closed book”: no notes, electronics, or cheat sheets allowed.

• When solving a problem, do not assume any known result from the lectures, unless we explicitly
state that you might use some known result.

• Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

• Remember to write which variables represent shared objects (e.g., registers).

• Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

• Unless otherwise stated, we ask for wait-free algorithms.

• Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

• For every algorithm you write, provide a short explanation of why the algorithm is correct.

• Make sure that your name and SCIPER number appear on every sheet of paper you hand in.

• You are only allowed to use additional pages handed to you upon request by the TAs.

Good luck!

Problem Max Points Score
1 2

2 3

3 3

4 2

Total 10

1



2



Problem 1 (2 points)

Task. Write an algorithm that implements a MRSW atomic multi-valued register using (any number
of) SRSW regular multi-valued registers.

3



4



Problem 2 (3 points)

The register-swap operation is an atomic operation with the following sequential specification.

1 Variables:
2 Shared MWMR atomic registers A and B.
3 procedure register-swap(A, B)
4 tempA← A.read()
5 tempB← B.read()
6 A.write(tempB)
7 B.write(tempA)

Figure 1: Sequential specification of the register-swap atomic operation.

Consider an asynchronous shared-memory system with n processes, n − 1 of which may fail
by crashing. Assume atomic MRMW registers, on which you can perform atomic read, write, and
register-swap operations.

Task. Write an algorithm that implements wait-free consensus for n processes in this setting.

5



6



Problem 3 (3 points)

The sequential specification of a test-and-set object is the following.

1 Variables:
2 Binary Register V, initially 0.
3 procedure test-and-set()
4 temp← V.read()
5 if temp = 0 then

6 V.write(1)
7 return temp

Figure 2: Sequential specification of test-and-set.

Consider an asynchronous shared-memory system with three processes, two of which may fail by
crashing. Assume that atomic multi-reader multi-writer registers and test-and-set objects are available.

Task. Prove that one cannot solve wait-free consensus in this system.

7



8



Problem 4 (2 points)

The augmented double-ended queue object is the same as the queue object except that it supports
enqueue and dequeue operations on both of its ends (HEAD or TAIL). In addition, processes can invoke
a total of 3 peek operations. Each of the first 3 peek calls returns the value at the selected end of the
queue. Every subsequent peek call returns ⊥.

The sequential specification of the object using a doubly linked list is given in Figure 3.

1 Variables:
2 elements := List(), the list of elements in the queue
3 peeks invoked := 0, the number of invoked peeks

4 procedure enqueue(end,val)
5 if end = HEAD

6 elements.add first(val)
7 else
8 elements.add last(val)

9 procedure dequeue(end)
10 if end = HEAD

11 val← elements.first()
12 elements.remove first()
13 else
14 val← elements.last()
15 elements.remove last()
16 return val

17 procedure peek(end)
18 if peeks invoked = 3
19 return ⊥
20 peeks invoked← peeks invoked + 1

21 if end = HEAD

22 return elements.first()
23 else
24 return elements.last()

Figure 3: Sequential specification of the augmented double-ended queue.

Task. Write an algorithm that implements a wait-free consensus object in a system of at most 4

processes using augmented double-ended queue objects that support at most 3 peek operations and
registers.

9



10



11



12


