
Transactional Memory

R. Guerraoui, EPFL

Locking is ’’history’’

Lock-freedom is ’’difficult’’

Wanted

A synchronisation abstraction that
is simple, robust and efficient

Transactions

Historical perspective

Eswaran et al (CACM’76) Databases
Papadimitriou (JACM’79) Theory
Liskov/Sheifler (TOPLAS’82) Language
Knight (ICFP’86) Architecture
Herlihy/Moss (ISCA’93) Hardware
Shavit/Touitou (PODC’95) Software
Herlihy et al (PODC’03) Software – Dynamic

accessing object 1;
accessing object 2;

Back to the sequential level

accessing object 1;
accessing object 2;

Back to the sequential level

atomic {

}

Semantics (serialisability)

Every transaction appears to execute
at an indivisible point in time
(linearizability of transactions)

Double-ended queue

Enqueue Dequeue

class Queue {
QNode head;
QNode tail;
public enq(Object x) {
atomic {
QNode q = new QNode(x);
q.next = head;
head = q;

}
}
... }

Queue composition

Dequeue
Enqueue

class Queue {
…
public transfer(Queue q) {
atomic {
Qnode n = this.dequeue();
q.enqueue(n) }

}
... }

Simple example
(consistency invariant)

0 < x < y

T: x := x+1 ; y:= y+1

Simple example
(transaction)

accessing object 1;
accessing object 2;

The illusion of a critical section

atomic {

}

“It is better for Intel to get involved in this
[Transactional Memory] now so when we get to the
point of having …tons… of cores we will have the
answers”

Justin Rattner, Intel Chief Technology Officer

“…we need to explore new techniques like
transactional memory that will allow us to get the
full benefit of all those transistors and map that
into higher and higher performance.”

Bill Gates

“…manual synchronization is
intractable…transactions are the only
plausible solution….”

Tim Sweeney, Epic Games

Sun/Oracle, Intel, AMD, IBM, MSR

Fortress (Sun); X10 (IBM); Chapel (Cray)

The TM Topic has been a
VERY HOT topic

begin() returns ok

read() returns a value or abort
write() returns an ok or abort

commit() returns ok or abort
abort() returns ok

The TM API
(a simple view)

Two-phase locking

To write or read O, T requires a lock on O;
T waits if some T’ acquired a lock on O

At the end, T releases all its locks

Two-phase locking
(more details)

Every object O, with state s(O) (a register), is
protected by a lock l(O) (a c&s)

Every transaction has local variables wSet and wLog

Initially: l(O) = unlocked, wSet = wLog = Æ

Two-phase locking
Upon op = read() or write(v) on object O
if O wSet then

wait until unlocked= l(O).c&s(unlocked,locked)
wSet = wSet U O
wLog = wLog U S(O).read()

if op = read() then return S(O).read()
S(O).write(v)
return ok

€

∉

Two-phase locking (cont’d)

Upon commit()
cleanup()
return ok

Upon abort()
rollback()
cleanup()
return ok

Two-phase locking (cont’d)

Upon rollback()
for all O Î wSet do S(O).write(wLog(O))
wLog = Æ

Upon cleanup()
for all O Î wSet do l(O).write(unlocked)
wSet = Æ

Why two phases?
(what if?)

To write or read O, T requires a lock on O;
T waits if some T’ acquired a lock on O

T releases the lock on O when T is done with O

Why two phases?

T1

T2

read(0) write(1)
O1 O2

read(0) write(1)
O2 O1

Two-phase locking
(read-write lock)

To write O, T requires a write-lock on O;
T waits if some T’ acquired a lock on O

To read O, T requires a read-lock on O;
T waits if some T’ acquired a write-lock on O

Before committing, T releases all its locks

Two-phase locking
- better dead than wait -

To write O, T requires a write-lock on O;
T aborts if some T’ acquired a lock on O

To read O, T requires a read-lock on O;
T aborts if some T’ acquired a write-lock on O

Before committing, T releases all its locks
A transaction that aborts restarts again

Two-phase locking
- better kill than wait -

To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a lock on O

To read O, T requires a read-lock on O;
T aborts T’ if some T’ acquired a write-lock on O

Before committing, T releases all its locks
A transaction that is aborted restarts again

Two-phase locking
- better kill than wait -

To write O, T requires a write-lock on O;
T aborts T’ if some T’ acquired a lock on O

To read O, T requires a read-lock on O;
T waits if some T’ acquired a write-lock on O

Before committing, T releases all its locks
A transaction that is aborted restarts again

Visible Read
(SXM, RSTM, TLRW)

Write is mega killer: to write an object,
a transaction aborts any live one which
has read or written the object

Visible but not so careful read: when a
transaction reads an object, it says so

Visible Read
A visible read invalidates cache lines

For read-dominated workloads, this means a
lot of traffic on the bus between processors

- This reduces the throughput
- Not a big deal with single-CPU, but with

many core machines (e.g. SPART T2 Niagara)

Two-phase locking
with invisible reads

To write O, T requires a write-lock on O;
T waits if some T’ acquired a write-lock on O

To read O, T checks if all objects read remain
valid - else T aborts

Before committing, T checks if all objects read
remain valid and releases all its locks

Invisible reads
(more details)

Every object O, with state s(O) (register), is protected
by a lock l(O) (c&s)

Every transaction maintains, besides wSet and wLog:

- a local variable rset(O) for every object

Invisible reads
Upon write(v) on object O
if O wSet then

wait until unlocked= l(O).c&s(unlocked,locked)
wSet = wSet U O
wLog = wLog U S(O).read()

(*,ts) = S(O).read()
S(O).write(v,ts)
return ok

€

∉

Invisible reads
Upon read() on object O
(v,ts) = S(O).read()
if O Î wSet then return v
if l(O) = locked or not validate() then abort()
if rset(O) = 0 then rset(O) = ts
return v

Invisible reads
Upon validate()
for all O s.t rset(O) > 0 do
(v,ts) = S(O).read()
if ts ≠ rset(O) or

(O wset and l(O) = locked)
then return false
else return true

€

∉

Invisible reads
Upon commit()
if not validate() then abort()
for all O Î wset do

(v,ts) = S(O).read()
S(O).write(v,ts+1)
cleanup()

Invisible reads
Upon rollback()
for all O Î wSet do S(O).write(wLog(O))
wLog = Æ

Upon cleanup()
for all O Î wset do l(O).write(unlocked)
wset = Æ
rset(O) = 0 for all O

DSTM (SUN)
To write O, T requires a write-lock on O;

T aborts T’ if some T’ acquired a write-lock on O

To read O, T checks if all objects read remain
valid – else T abort
Before committing, T releases all its locks

DSTM

Killer write (ownership)

Careful read (validation)

More efficient algorithm?

Apologizing versus asking permission

Killer write
Optimistic read

validity check only at commit time

Example

Invariant: 0 < x < y
Initially: x := 1; y := 2

Division by zero

T1: x := x+1 ; y:= y+1

T2: z := 1 / (y - x)

T1: x := 3; y:= 6

Infinite loop

T2: a := y; b:= x;
repeat b:= b + 1 until a = b

Opacity

Serializability

Consistent memory view

Trade-off

The read is either
visible or careful

Intuition

T1

T2

read()

write()
commit

I1,I2,..,Im

O1,O2,..,On
read()
Ik

Read invisibility

The fact that the read is invisible means T1
cannot inform T2, which would in turn abort T1
if it accessed similar objects (SXM, RSTM)

NB. Another way out is the use of multiversions:
T2 would not have written “on” T1

Conditional progress
- obstruction-freedom -

A correct transaction that eventually does not
encounter contention eventually commits

Obstruction-freedom seems reasonable
and is indeed possible

DSTM
To write O, T requires a write-lock on O (use C&S);

T aborts T’ if some T’ acquired a write-lock on O (use
C&S)

To read O, T checks if all objects read remain valid -
else abort (use C&S)
Before committing, T releases all its locks (use C&S)

If a transaction T wants to write an object O
owned by another transaction T’, T calls a
contention manager

The contention manager can decide to wait,
retry or abort T’

Progress

Contention managers
Aggressive: always aborts the victim

Backoff: wait for some time (exponential backoff) and
then abort the victim

Karma: priority = cumulative number of shared objects
accessed – work estimate. Abort the victim when
number of retries exceeds difference in priorities.

Polka: Karma + backoff waiting

Greedy contention manager
State

Priority (based on start time)
Waiting flag (set while waiting)

Wait if other has
Higher priority AND not waiting

Abort other if
Lower priority OR waiting

T1

T2

read()

write()
O1

O1
write()
O2

Aborting is a fatality

read()
O2

TM does not always replace locks:
it hides them

Memory transactions look like db
transactions but are different

Concluding remarks

The garbage-collection analogy
In the early times, the programmers had to take
care of allocating and de-allocating memory

Garbage collectors do it for you: they are now
incorporated in Java and other languages

Hardware support was initially expected, but
now software solutions are very effective

