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Locking is ’’history’’

Lock-freedom is ’’difficult’’



Wanted

A synchronisation abstraction that 
is simple, robust and efficient



Transactions



Historical perspective 

Eswaran et al (CACM’76) Databases
Papadimitriou (JACM’79) Theory
Liskov/Sheifler (TOPLAS’82) Language 
Knight (ICFP’86) Architecture
Herlihy/Moss (ISCA’93)  Hardware
Shavit/Touitou (PODC’95) Software
Herlihy et al (PODC’03) Software – Dynamic



accessing object 1;
accessing object 2;

Back to the sequential level



accessing object 1;
accessing object 2;

Back to the sequential level

atomic {

}



Semantics (serialisability)

Every transaction appears to execute 
at an indivisible point in time 
(linearizability of transactions) 



Double-ended queue

Enqueue Dequeue



class Queue {
QNode head;
QNode tail;
public enq(Object x) {
atomic {
QNode q = new QNode(x);
q.next = head;
head = q;

}
}
... }



Queue composition

Dequeue
Enqueue



class Queue {
…
public transfer(Queue q) {
atomic {
Qnode n = this.dequeue();
q.enqueue(n) }

}
... }



Simple example
(consistency invariant)

0 < x < y



T: x := x+1 ; y:= y+1

Simple example
(transaction)



accessing object 1;
accessing object 2;

The illusion of a critical section

atomic {

}



“It is better for Intel to get involved in this 
[Transactional Memory] now so when we get to the 
point of having …tons… of cores we will have the 
answers”

Justin Rattner, Intel Chief Technology Officer



“…we need to explore new techniques like 
transactional memory that will allow us to get the 
full benefit of all those transistors and map that 
into higher and higher performance.”

Bill Gates



“…manual synchronization is 
intractable…transactions are the only 
plausible solution….”

Tim Sweeney, Epic Games



Sun/Oracle, Intel, AMD, IBM, MSR  

Fortress (Sun); X10 (IBM); Chapel (Cray)

The TM Topic has been a  
VERY HOT topic



begin() returns ok

read() returns a value or abort
write() returns an ok or abort

commit() returns ok or abort
abort() returns ok

The TM API
(a simple view)



Two-phase locking

To write or read O, T requires a lock on O; 
T waits if some T’ acquired a lock on O

At the end, T releases all its locks



Two-phase locking 
(more details)

Every object O, with state s(O) (a register), is 
protected by a lock l(O) (a c&s)

Every transaction has local variables wSet and wLog

Initially: l(O) = unlocked, wSet  = wLog = Æ



Two-phase locking
Upon op = read() or write(v) on object O
if O     wSet then 

wait until unlocked= l(O).c&s(unlocked,locked)
wSet = wSet U O
wLog = wLog U S(O).read()

if op = read() then return S(O).read()
S(O).write(v)
return ok

€ 

∉



Two-phase locking (cont’d)

Upon commit()
cleanup()
return ok

Upon abort()
rollback()
cleanup()
return ok



Two-phase locking (cont’d)

Upon rollback()
for all O Î wSet do S(O).write(wLog(O))
wLog = Æ

Upon cleanup()
for all O Î wSet do l(O).write(unlocked) 
wSet = Æ



Why two phases? 
(what if?)

To write or read O, T requires a lock on O; 
T waits if some T’ acquired a lock on O 

T releases the lock on O when T is done with O



Why two phases?

T1

T2

read(0) write(1)
O1 O2

read(0) write(1)
O2 O1



Two-phase locking 
(read-write lock)

To write O, T requires a write-lock on O; 
T waits if some T’ acquired a lock on O

To read O, T requires a read-lock on O; 
T waits if some T’ acquired a write-lock on O

Before committing, T releases all its locks



Two-phase locking
- better dead than wait -

To write O, T requires a write-lock on O; 
T aborts if some T’ acquired a lock on O

To read O, T requires a read-lock on O; 
T aborts if some T’ acquired a write-lock on O

Before committing, T releases all its locks
A transaction that aborts restarts again



Two-phase locking
- better kill than wait -

To write O, T requires a write-lock on O; 
T aborts T’ if some T’ acquired a lock on O

To read O, T requires a read-lock on O; 
T aborts T’ if some T’ acquired a write-lock on O

Before committing, T releases all its locks
A transaction that is aborted restarts again



Two-phase locking
- better kill than wait -

To write O, T requires a write-lock on O; 
T aborts T’ if some T’ acquired a lock on O

To read O, T requires a read-lock on O; 
T waits if some T’ acquired a write-lock on O

Before committing, T releases all its locks
A transaction that is aborted restarts again



Visible Read
(SXM, RSTM, TLRW)

Write is mega killer: to write an object, 
a transaction aborts any live one which 
has read or written the object

Visible but not so careful read: when a 
transaction reads an object, it says so 



Visible Read
A visible read invalidates cache lines

For read-dominated workloads, this means a 
lot of traffic on the bus between processors

- This reduces the throughput
- Not a big deal with single-CPU, but with 

many core machines (e.g. SPART T2 Niagara)



Two-phase locking
with invisible reads 

To write O, T requires a write-lock on O; 
T waits if some T’ acquired a write-lock on O

To read O, T checks if all objects read remain 
valid - else T aborts

Before committing, T checks if all objects read 
remain valid and releases all its locks



Invisible reads              
(more details)

Every object O, with state s(O) (register), is protected 
by a lock l(O) (c&s)

Every transaction maintains, besides wSet and wLog:

- a local variable rset(O) for every object



Invisible reads
Upon write(v) on object O
if O    wSet then 

wait until unlocked= l(O).c&s(unlocked,locked) 
wSet = wSet U O
wLog = wLog U S(O).read() 

(*,ts) = S(O).read()
S(O).write(v,ts)
return ok

€ 

∉



Invisible reads
Upon read() on object O
(v,ts) = S(O).read()
if O  Î wSet then return v
if l(O) = locked or not validate() then abort()
if rset(O) = 0 then rset(O) = ts
return v



Invisible reads
Upon validate()
for all O s.t rset(O) > 0 do
(v,ts) = S(O).read()
if ts ≠ rset(O) or 

(O    wset and l(O) = locked)
then return false
else return true

€ 

∉



Invisible reads
Upon commit()
if not validate() then abort()
for all O Î wset do 

(v,ts) = S(O).read()
S(O).write(v,ts+1)
cleanup()



Invisible reads
Upon rollback()
for all O Î wSet do S(O).write(wLog(O))
wLog = Æ

Upon cleanup()
for all O Î wset do l(O).write(unlocked)
wset = Æ
rset(O) = 0 for all O  



DSTM (SUN)
To write O, T requires a write-lock on O; 

T aborts T’ if some T’ acquired a write-lock on O

To read O, T checks if all objects read remain 
valid – else T abort
Before committing, T releases all its locks



DSTM

Killer write (ownership) 

Careful read (validation)



More efficient algorithm?

Apologizing versus asking permission

Killer write
Optimistic read

validity check only at commit time



Example

Invariant: 0 < x < y
Initially: x := 1; y := 2



Division by zero

T1: x := x+1 ; y:= y+1 

T2: z := 1 / (y - x)



T1: x := 3; y:= 6 

Infinite loop

T2: a := y; b:= x; 
repeat  b:= b + 1 until a = b



Opacity

Serializability

Consistent memory view



Trade-off

The read is either 
visible or careful 



Intuition 

T1

T2

read()

write()
commit

I1,I2,..,Im

O1,O2,..,On
read()
Ik



Read invisibility

The fact that the read is invisible means T1 
cannot inform T2, which would in turn abort T1 
if it accessed similar objects (SXM, RSTM)

NB. Another way out is the use of multiversions: 
T2 would not have written “on” T1



Conditional progress 
- obstruction-freedom -

A correct transaction that eventually does not 
encounter contention eventually commits

Obstruction-freedom seems reasonable 
and is indeed possible



DSTM
To write O, T requires a write-lock on O (use C&S); 

T aborts T’ if some T’ acquired a write-lock on O (use 
C&S)

To read O, T checks if all objects read remain valid -
else abort (use C&S)
Before committing, T releases all its locks (use C&S)



If a transaction T wants to write an object O 
owned by another transaction T’, T calls a 
contention manager

The contention manager can decide to wait, 
retry or abort T’

Progress



Contention managers
Aggressive: always aborts the victim

Backoff: wait for some time (exponential backoff) and 
then abort the victim

Karma: priority = cumulative number of shared objects 
accessed – work estimate. Abort the victim when 
number of retries exceeds difference in priorities. 

Polka: Karma + backoff waiting



Greedy contention manager
State

Priority (based on start time)
Waiting flag (set while waiting)

Wait if other has
Higher priority AND not waiting

Abort other if
Lower priority OR waiting



T1

T2

read()

write()
O1

O1
write()
O2

Aborting is a fatality

read()
O2



TM does not always replace locks:         
it hides them 

Memory transactions look like db 
transactions but are different

Concluding remarks



The garbage-collection analogy
In the early times, the programmers had to take 
care of allocating and de-allocating memory

Garbage collectors do it for you: they are now 
incorporated in Java and other languages

Hardware support was initially expected, but 
now software solutions are very effective




