The Limitations of Registers

R. Guerraoui

Distributed Programming Laboratory
Registers

• **Question 1**: what objects can we implement with registers? *Counters* and *snapshots* (previous lecture)

• **Question 2**: what objects we cannot implement? (this lecture)
Shared memory model

Registers

P1 P2 P3
Shared memory model

- Registers
- Counters
- Snapshots
Shared memory model

Counters

Snapshots

Registers

Queue?

Fetch&Inc?
Fetch&Inc

- A counter that contains an integer

- Operation fetch&inc() increments the counter and returns the new value
The consensus object

- One operation \texttt{propose()} which returns a value. When a propose operation returns, we say that the process decides

- No two processes decide differently

- Every decided value is a proposed value
The consensus object

- **Proposition:**
 - Consensus can be implemented among two processes with *Fetch&Inc and registers*

- Proof (algorithm): consider two processes p0 and p1 and two registers R0 and R1 and a *Fetch&Inc C.*
2-Consensus with Fetch&Inc

- Uses two registers R0 and R1, and a Fetch&Inc object C (with one fetch&inc() operation that returns its value)
- (NB. The value in C is initialized to 0)

Process pl:

- propose(vI)
- R{1-I}.write(vI)
- val := C.fetch&inc()
- if(val = 1) then
 - return(vI)
- else return(R{1-I}.read())
Impossibility [FLP85,LA87]

- **Proposition:** No asynchronous deterministic algorithm implements *consensus* among two processes using only *registers*

- **Corollary:** No algorithm implements *Fetch&Inc* among two processes using only *registers*
Queue

- The queue is an object container with two operations: `enq()` and `deq()`

- Can we implement a (atomic wait-free) *queue*?
2-Consensus with queues

Uses two registers R0 and R1, and a queue Q
Q is initialized to \{winner, loser\}

Process pl:

```plaintext
propose(vl)
    R1.write(vl)
    item := Q.dequeue()
    if item = winner return(vl)
    return(R{1-I}.read())
```
\[
\text{Return}(0) \quad \text{Deq()} \rightarrow \text{winner} \\
\text{Return}(0) \quad \text{Deq()} \rightarrow \text{loser}
\]
Correctness

Proof (algorithm):

- (wait-freedom) by the assumption of a wait-free register and a wait-free queue plus the fact that the algorithm does not contain any wait statement

- (validity) If \(p_I \) dequeues winner, it decides on its own proposed value. If \(p_I \) dequeues loser, then the other process \(p_J \) dequeued winner before. By the algorithm, \(p_J \) has previously written its input value in \(RJ \). Thus, \(p_I \) decides on \(p_J \)'s proposed value;

- (agreement) if the two processes decide, they decide on the value written in the same register.
More consensus implementations

- A **Test&Set** object maintains binary values x, init to 0, and y; it provides one operation: \texttt{test\&set()}
 - Sequential spec:
 - \texttt{test\&set() \{y := x; x: = 1; return(y);\}}

- A **Compare\&Swap** object maintains a value x, init to \bot, and provides one operation: \texttt{compare\&swap(v,w)};
 - Sequential spec:
 - \texttt{c\&s(old,new) \{if x = old then x := new; return(x)\}}
2-Consensus with Test&Set

- Uses two registers R0 and R1, and a Test&Set object T

- Process pl:

 - propose(vI)
 - R1.write(vI)
 - val := T.test&set()
 - if(val = 0) then
 - return(vI)
 - else return(R{1-l}.read())
N-Consensus with C&S

- Uses a C&S object C

- Process pi:
 - propose(vl)
 - val := C.c&s(⊥,vl)
 - if(val = ⊥) then
 √ return(vl)
 – else return(val)
Proposition: there is no asynchronous deterministic algorithm that implements consensus among two processes using only registers

Corollary: there is no algorithm that implements a queue (Fetch&Inc, …) among two processes using only registers
Registers

• **Question 1:** what objects can we implement with registers? *Counters* and *snapshots* (previous lecture)

• **Question 2:** what objects we cannot implement? All objects that (together with *registers*) can implement *consensus* (this lecture)
Proposition: there is no algorithm that implements consensus among two processes using only registers

Proof (by contradiction): consider two processes p_0 and p_1 and any number of registers, $R_1..R_k$.

Assume that a consensus algorithm A for p_0 and p_1 exists.
Elements of the model

- A configuration is a global state of the distributed system

- A new configuration is obtained by executing a step on a previous configuration: the step is the unit of execution
Elements of the model

- The adversary decides which process executes the next step and the algorithm deterministically decides the next configuration based on the current one
What is distributed computing?
A game
A game between an adversary and a set of processes
The adversary decides which process goes next

The processes take steps
Elements of the model

- The adversary decides which process executes the next step and the algorithm deterministically decides the next configuration based on the current one
Elements of the model

- **Schedule**: a sequence of steps represented by process ids
- The schedule is chosen by the system
- An asynchronous system is one with no constraint on the schedules: any sequence of process ids is a schedule
Consensus

- The algorithm must ensure that agreement and validity are satisfied in every schedule

- Every process that executes an infinite number of steps eventually decides
Impossibility (elements)

- (1) a (initial) **configuration** C is a set of (initial) values of p0 and p1 together with the values of the registers: R1..Rk,..;
- (2) a **step** is an elementary action executed by some process pl: it consists in reading or writing a value in a register and changing pl’s state according to the algorithm A;
- (3) a **schedule** S is a sequence of steps; S(C) denotes the configuration that results from applying S to C.
Impossibility (elements)

- Consider u to be 0 or 1; a configuration C is *u-valent* if, starting from C, no matter how the processes behave, no decision other than u is possible.

- We say that the configuration is *univalent*. Otherwise, the configuration is called *bivalent*.
\begin{align*}
P_0(0) & \quad \begin{array}{c} W(X) \end{array} & \quad R() \rightarrow Y \quad \text{Return}(0) \\
& \quad \begin{array}{c} RI \end{array} & \quad \begin{array}{c} RJ \end{array} \\

P_1(0) & \quad \begin{array}{c} W(Z) \end{array} & \quad \begin{array}{c} W(V) \end{array} \quad \text{Return}(0) \\
& \quad \begin{array}{c} RK \end{array} & \quad \begin{array}{c} RL \end{array} \end{align*}
\[
P0(1) \quad \frac{W(X)}{RI} \quad \frac{R() \rightarrow Y}{RJ} \quad \text{Return}(1)
\]

\[
P1(1) \quad \frac{W(Z)}{RK} \quad \frac{W(V)}{RL} \quad \text{Return}(1)
\]
\[\text{Return}(1/0) \]

\[
\begin{array}{ccc}
\text{P0(1)} & W(X) & R() \rightarrow Y \\
& \text{RI} & \text{RJ} \\
\text{P1(0)} & W(Z) & W(V) \\
& \text{RK} & \text{RL} \\
\end{array}
\]
Impossibility (structure)

- **Lemma 1:** there is at least one initial *bivalent* configuration

- **Lemma 2:** given any bivalent configuration C, there is an *arbitrarily long schedule* $S(C)$ that leads to another bivalent configuration
The conclusion

- Lemmas 1 and 2 imply that there is a configuration C and an *infinite* schedule S such that, for any prefix S' of S, $S'(C)$ is bivalent.

- In infinite schedule S, at least one process executes an infinite number of steps and does not decide

- A contradiction with the assumption that A implements consensus.
Lemma 1

The initial configuration $C(0,1)$ is bivalent

Proof: consider $C(0,0)$ and p_1 not taking any step: p_0 decides 0; p_0 cannot distinguish $C(0,0)$ from $C(0,1)$ and can hence decides 0 starting from $C(0,1)$; similarly, if we consider $C(1,1)$ and p_0 not taking any step, p_1 eventually decides 1; p_1 cannot distinguish $C(1,1)$ from $C(0,1)$ and can hence decides 1 starting from $C(0,1)$. Hence the bivalency.
Lemma 2

Given any bivalent configuration C, there is an arbitrarily long schedule S such that $S(C)$ is bivalent.

Proof (by contradiction): let S be the schedule with the maximal length such as $D = S(C)$ is bivalent; $p_0(D)$ and $p_1(D)$ are both univalent: one of them is 0-valent (say $p_0(D)$) and the other is 1-valent (say $p_1(D)$).
Lemma 2

- Proof (cont’d): To go from D to p0(D) (vs p1(D)) p0 (vs p1) accesses a register; the register must be the same in both cases; otherwise p1(p0(D)) is the same as p0(p1(D)): in contradiction with the very fact that p0(D) is 0-valent whereas p1(D) is 1-valent
Lemma 2

- Proof (cont’d): To go from D to p0(D), p0 cannot read R; otherwise R has the same state in D and in p0(D); in this case, the registers and p1 have the same state in p1(p0(D)) and p1(D); if p1 is the only one executing steps, then p1 eventually decides 1 in both cases: a contradiction with the fact that p0(D) is 0-valent; the same argument applies to show that p1 cannot read R to go from D to p1(D)

Thus both p0 and p1 write in R to go from D to p0(D) (resp., p1(D)). But then p0(p1(D)) = p0(D) (resp. p1(p0(D)) = p1(D)) --- a contradiction.
The conclusion (bis)

Lemmas 1 and 2 imply that there is a configuration C and an *infinite* schedule S such that, for any prefix S' of S, $S'(C)$ is bivalent.

In infinite schedule S, at least one process executes an infinite number of steps and does not decide.

A contradiction with the assumption that A implements consensus.