Concurrent Algorithms Exercise 10 December 3, 2019

Problem 1.

In this problem, we consider a system of n processes.

An (m,n)-assignment object, where $n \geq m > 1$, has n fields (for instance, an n-element array) and two operations: assign() and read(). The assign() operation takes as arguments m values $v_1,...,v_m$ and m indices $i_1,...,i_m$ and atomically assigns value v_j to array element i_j , for j=1,...,m. Note: the entire sequence of m assignments is atomic. The read() operation takes an index argument i and returns the ith array element.

Your task is to prove that atomic $(n, \frac{n(n+1)}{2})$ -assignment objects, where n > 1, have consensus number at least n.