Problem 1. To prove that the \((n, \frac{n(n+1)}{2}) \)-assignment object has consensus number at least \(n \), we just have to devise a consensus algorithm for \(n \) processes. The \((n, \frac{n(n+1)}{2}) \)-assignment object has \(\frac{n(n+1)}{2} \) fields. For convenience we name the fields as follows. There are \(n \) fields \(r_0, \ldots, r_{n-1} \) where process \(i \) writes to register \(r_i \), and \(\frac{n(n-1)}{2} \) fields \(r_{ij} \), where \(i > j \), where processes \(i \) and \(j \) both write to field \(r_{ij} \). All fields are initialized to \textit{null}. Each process \(i \) atomically assigns its input value to \(n \) fields: its single-writer field \(r_i \) and its \(n - 1 \) multi-writer registers \(r_{ij} \). For example, if \(n = 3 \), process 1 will write to single-writer register \(r_1 \) and to multi-writer registers \(r_{10} \) and \(r_{21} \). The algorithm decides the first value to be assigned. After assigning to its fields, a thread determines the relative ordering of the assignments for every two processes \(i \) and \(j \) as follows:

- Read \(r_{ij} \). If the value is \textit{null}, then neither assignment has occurred.
- Otherwise, read \(r_i \) and \(r_j \). If \(r_i \)'s value is \textit{null}, then \(j \) precedes \(i \), and similarly for \(r_j \).
- If neither \(r_i \) nor \(r_j \) is null, reread \(r_{ij} \). If its value is equal to the value read from \(r_i \), then \(j \) precedes \(i \), else vice versa.

Repeating this procedure, a process can determine which value was written by the earliest assignment.

This described algorithm is taken from the book “The Art of Multiprocessor Programming.” The interested student can also have a look at Section 3.6 of the “Wait-free Synchronization” paper on the consensus number of the \((m, n) \)-assignment object.