
Concurrent Algorithms November 11, 2019

Exercise 6

Problem 1. A k-set-agreement object is a generalization of a consensus object in which processes could de-
cide up to k different values. Formally, k-set-agreement is defined as follows. It has an operation propose(v)
that returns (or we say decides) a value, which satisfies the following properties:

1. Validity: Decided values are proposed values.

2. Agreement: At most k different values could be decided.

3. Termination: Every correct process eventually decides a value.

A k-simultaneous-consensus object is another generalization of a consensus object in which processes
could decide k values simultaneously. Formally, k-simultaneous consensus is defined as follows. It has
an operation propose(v1, . . . , vk) that returns (or we say decides) a pair (index, value) with index ∈ {1, . . . , k},
which satisfies the following properties:

1. Validity: If a process decides (i, v), then some process proposed (v1, . . . , vk) with vi = v.

2. Agreement: If two processes decide (i, v) and (i′, v′) with i = i′, then v = v′.

3. Termination: Every correct process eventually decides a value.

Your task is to show that k-set-agreement and k-simultaneous-consensus are equivalent. That is, you
have to show that one implements the other.

Hint: When implementing k-consensus using k-set-agreement, an algorithm that solves the problem is the
following:

1: function KSC.PROPOSE(v1, . . . , vk)
2: Vi ← [v1, . . . , vk]
3: dVi ← kSA.PROPOSE(Vi)
4: REG[i]← dVi
5: snapi ← REG.snapshot()
6: ci ← number of distinct (non-⊥) vectors in snapi
7: di ←minimum (non-⊥) vector in snapi
8: return〈ci, di[ci]〉
9: end function

Where REG[0, . . . , n− 1] is an array of single-writer multi-readers atomic registers initialized at ⊥. Pro-
cesses write atomically a vector of values in their register (Line 4). REG.snapshot() returns an atomic snapshot
of this array of registers. Consequently, snapi[0, . . . , n− 1] is an array of vectors, possibly containing ⊥ val-
ues for some indices. We suppose that there is an order on the set of values that can be proposed, and we
use the induced lexicographic order on vectors at Line 7.

Your task is then to (1) prove that the algorithm above implements a k-simultaneous consensus from
k-set agreement objects and atomic registers; and (2) find an algorithm that implements a k-set agreement
object using k-simultaneous consensus objects and atomic registers.

p-1



Solution

We will show that the k-set agreement problem and the k-consensus problem are equivalent. To do that
we will show two wait-free constructions, one in each direction. Both constructions are independent of the
number of processes.

From k-simultaneous-consensus to k-set agreement A pretty simple wait-free algorithm that builds
a k-set agreement object (denoted KSA) on top of a k-consensus object (denoted KC) is described below.
The invoking process pi calls the underlying object KC with its input to the k-set agreement as input, and
obtains a pair {ci, di}. It then returns di as the decision value for its invocation of KSA.set propose k(vi).

KSA.set_propose_k(vi)

{
{ci, di} = KSC.sc_propose_k([vi, vi, ..., vi]);

return di;

}

Proof. The proof is straightforward. The termination and validity of the k-set agreement object follow di-
rectly from the code and the same properties of the underlying k-consensus object. The agreement property
follows from the fact that at most k values can be decided from the k consensus instances of the k-consensus
object.

From k-set agreement to k-simultaneous-consensus We prove that the presented algorithm (kSC.PROPOSE)
satisfies validity, agreement, and termination.

The algorithm satisfies termination since we can implement a snapshot object in a wait-free manner and
we assume that the k-set-agreement object satisfies termination.

Additionally, the algorithm satisfies validity. To see this, note that snapi contains at most k vectors,
where each vector is proposed by some process. Therefore, the vector di contains a proposed vector by
some process and when a process returns (j, di[j]), it is the case that some process proposed a vector (di)
with the j-th element being di[j].

Finally, the algorithm satisfies agreement. Assume by way of contradiction that this is not the case.
This means that there exist two different processes pa and pb that decide (j, v) and (j, v′) respectively and
v 6= v′. Process pa performs the steps REG[a] → snapa → ca → da, while process pb performs the steps
REG[b]→ snapb → cb → db. Since both pa and pb decide (j, v) and (j, v′) we know that pa reads ca = j and
pb reads cb = j, but then da and db contain a different minimum vector. Without loss of generality assume
that snapa takes place before snapb, denoted by snapa → snapb. We now have the following two options:

• REG[a]→ REG[b]→ snapa → snapb, but then da = db, a contradiction;

• REG[a]→ snapa → REG[b]→ snapb, but then ca 6= cb, a contradiction.

In both cases, we reach a contradiction, and hence the algorithm satisfies agreement.

p-2


