
Concurrent Algorithms November 18, 2019

Exercise 8
(Given as an exam problem in 2016-2017)

Problem 1. Consider the following implementation of an obstruction-free consensus object from atomic
multi-valued MRMW shared registers in a system of n processes. A process’s id is known to itself as i.

Using: an array of atomic multi-valued MRMW shared registers T[1, 2, ..., n],
initialized to 0;

Using: an array of atomic multi-valued MRMW shared registers V[1, 2, ..., n],
initialized to (⊥, 0);

propose(v) {
ts := i;
while (true) do{

T[i].write(ts);

maxts := 0;
val := ⊥;

for j = 1 to n do

(t, vt) := V[j].read();
if maxts < t then

maxts := t;
val := vt;

if val = ⊥ then val := v;

maxts := 0;
for j = 1 to n do

t := T[j].read();
if maxts < t then maxts := t;

if ts = maxts then

V[i].write(val, ts);
return(val);

ts := ts + n;
}

}

Recall that obstruction-free consensus ensures the property of obstruction-freedom instead of wait-freedom.
Your tasks:

1. Explain what is obstruction-freedom and what is the difference between obstruction-freedom and
wait-freedom.

2. Answer whether the implementation satisfies obstruction-freedom. Justify your answer.

3. Is the algorithm correct? If the algorithm is correct prove its correctness. Otherwise, provide an
execution that shows the algorithm is incorrect.

p-1


