Concurrent Algorithms November 18, 2019

Solution to Exercise 8

Let a correct process be a process that does not crash. Then obstruction-freedom stip-
ulates the following:

e An implementation (of a shared object) is obstruction-free if any of its operations
returns a response if it is eventually executed without concurrency by a correct process.

Wait-freedom is stronger: any correct process that executes an operation eventually returns
a response. The difference is concurrency. Obstruction-freedom ensures termination in an
obstruction-free execution, i.e., assuming that eventually at most one process is taking steps.
However, in other executions, an obstruction-free implementation can never terminate.

The implementation is obstruction-free. Suppose that eventually only process P is taking
steps. Then eventually P finds its local timestamp ts is the highest among all the values in
the registers in array 7', and then returns a value.

Now we give an example execution where the implementation violates agreement, which
shows the implementation is incorrect. Figure 1 illustrates the example execution. Assume
two processes P, and Ps.

1. P, proposes some value v1. P; executes until the condition ts = maxts. P; checks the
condition to be true. Then P is suspended.

2. P, proposes some value vs. Ps executes to the end. We note that in the first loop, P»
sees that each cell of an array V is (L,0) and thus P, assigns vy to val after the first
loop. Then P, decides vs.

3. P, now continues and decides v;.

The example execution breaks agreement as P; and P, returns their own proposals, which
can be different.

P1 T[1].write(1) val=v1 Ifts = maxts V[1].write(v1, 1)
— e ° o ° —
return(v1)
P2 T[2].write(2) Va.| =v2
] [J
return(v2)

Figure 1: Example execution of an incorrect implementation of obstruction-free consensus

