
Concurrent Algorithms 2019

Midterm Exam Solutions

December 9, 2019

Problem 1 (2 points)

Solution

The implementations can be found in the lecture slides (11-13).

1



Problem 2 (2 points)

Solution. Consider an execution given in the figure below. In the execution, the scan of p2 records
the snapshot that does not observe the concurrent update of p1. Process p3 performs a scan that starts
after the update of p1 is done, so it has to observe its effects. It performs one collect before p2 writes the
results of its scan into its position in the snapshot object and another one after. Because the timestamps
of these two elements of the snapshot differ by one, it returns the scan of p2. The scan does not include
the update of p1, thus violating atomicity.

p1

p2

p3

update1(1)

update2(2)

scan

collect collect

scan

Figure 1: An execution violating atomicity

2



Problem 3 (3 points)

Solution

There are two correct answers.

Yes.

In a system of two or fewer processes, fetch-and-increment can implement an atomic log. We know
from class that fetch-and-increment has consensus number 2, thus can be used to implement a universal
construction in a system of 2 processes. That universal construction can then be used to implement the
atomic log.

No.

In a system of 3 or more processes, there is no wait-free atomic implementation of a shared log from
fetch-and-increment objects and registers.

The log object can be used to solve consensus in a system of n processes, where n can be arbitrarily
large. To do so, upon invocation of propose(v), process p simply appends v to the shared log, then
retrieves the log using getLog() and decides on the first value in the log.

Thus, the log object has consensus number ∞.
If it were possible to produce an implemention I of a linearizable and wait-free log object using

atomic read-write registers and fetch-and-increment objects, then I could then be used to solve consensus
for more than 2 processes. This contradicts the fact that fetch-and-increment has consensus number 2.

3



Problem 4 (3 points)

Solution

Consider a process p which is the only process taking steps. Because p is the only process taking steps
and the value of Cv is incremented in the while loop, then eventually the value of Cv is going to be
greater than the value of Cv−1. Therefore, process p will eventually decide a value, and consequently
the algorithm satisfies obstruction-freedom.

The algorithm satisfies validity because if all processes propose the same value v (which could be
either 0 or 1), then they increment the same counter Cv, and consequently the value of Cv is would be
greater than the value of Cv−1.

Since the algorithm satisfies obstruction-freedom and validity, then the only property it violates is
agreement. To show that it violates agreement consider the following execution in which process p0
proposes value 0 and process p1 proposes value 1:

• First, process p0 executes alone until line 10 and pauses immediately before executing line 10,

• then only process p1 takes steps, executing the first iteration of the while loop, where it increments
C1, and the second iteration of the loop, in which it decides 1 (because C1 = 1 and C0 = 0),

• then process p0 resumes taking steps incrementing C0 at line 10 and executing the second iteration
of the loop.

• Because during the second iteration of the loop by p0 the values of C0 and C1 are the same (C1 = 1
and C0 = 1), then p0 increments C0 again and executes the third iteration of the loop in which it
decides 0 (because C1 = 1 and C0 = 2).

4


