Problem 1. Consider the Disk Paxos algorithm in slides 14-15 of the lecture. The algorithm is reproduced below. If we omit line 11, is the algorithm still correct? Why or why not?

Algorithm 1 Obstruction-free consensus with Memory Failures
1: procedure PROPOSE(v)
2: while true do
3: for every memory m in parallel do
4: Reg[m][i].T.write(ts)
5: temp[m][1...n] ← Reg[m][1...n].read()
6: until completed for majority of memories
7: val ← temp[1..m][1..n].highestTspValue()
8: if val = ⊥ then val ← v
9: for every memory m in parallel do
10: Reg[m][i].V.write(val, ts)
11: temp[m][1...n] ← Reg[m][1..n].read()
12: until completed for majority of memories
13: if ts = temp[1...m][1..n].highestTsp() then return (val)
14: ts ← ts + n

Problem 2. Consider the following variant of the Non-equivocating Broadcast algorithm seen today in class. Does this algorithm satisfy the Non-Equivocating Broadcast properties? Why or why not?

Algorithm 2 Non-equivocating Broadcast
1: procedure BROADCAST(m)
2: R[s].write(m)
3: procedure RECEIVE
4: senderMsg = R[s].read()
5: for i = 1...n do
6: recvMsg = R[i].read()
7: if recvMsg ≠ ⊥ ∧ recvMsg ≠ senderMsg then
8: ⊥ found conflicting values (Byzantine sender), don’t deliver
9: return
10: R[i].write(senderMsg)
11: deliver(senderMsg)