Concurrent Algorithms

December 16, 2019

Exercise 9

Problem 1. Consider the Disk Paxos algorithm in slides 14-15 of the lecture. The algorithm is reproduced below. If we omit line 11, is the algorithm still correct? Why or why not?

Algorithm 1 Obstruction-free consensus with Memory Failures	
1: procedure $PROPOSE(v)$	
2:	while true do
3:	for every memory m in parallel do
4:	Reg[m][i].T.write(ts)
5:	$temp[m][1 \dots n] \leftarrow Reg[m][1 \dots n].read()$
6:	until completed for majority of memories
7:	$val \leftarrow temp[1m][1n].highestTspValue()$
8:	$\mathbf{if} \ val = \bot \ \mathbf{then} \ val \leftarrow v$
9:	for every memory m in parallel do
10:	Reg[m][i].V.write(val,ts)
11:	$temp[m][1n] \leftarrow Reg[m][1n].read()$
12:	until completed for majority of memories
13:	if $ts = temp[1 \dots m][1 \dots n]$.highest $Tsp()$ then return (val)
14:	$ts \leftarrow ts + n$

Problem 2. Consider the following variant of the Non-equivocating Broadcast algorithm seen today in class. Does this algorithm satisfy the Non-Equivocating Broadcast properties? Why or why not?

Algorithm 2 Non-equivocating Broadcast

```
1: procedure BROADCAST(m)
       R[s].write(m)
2:
3: procedure Receive
       senderMsg = R[s].read()
4:
       for i = 1 \dots n do
5:
          recvMsg = R[i].read()
6:
7:
          if recvMsg \neq \bot \land recvMsg \neq senderMsg then
             ▷ found conflicting values (Byzantine sender), don't deliver
8:
             return
9:
       R[i].write(senderMsg)
10:
       deliver(senderMsg)
11:
```