
Concurrent Algorithms December 16, 2019

Exercise 9

Problem 1. Consider the Disk Paxos algorithm in slides 14-15 of the lecture. The
algorithm is reproduced below. If we omit line 11, is the algorithm still correct? Why or
why not?

Algorithm 1 Obstruction-free consensus with Memory Failures

1: procedure propose(v)
2: while true do
3: for every memory m in parallel do
4: Reg[m][i].T.write(ts)
5: temp[m][1 . . . n]← Reg[m][1 . . . n].read()

6: until completed for majority of memories
7: val← temp[1..m][1..n].highestTspV alue()
8: if val = ⊥ then val← v
9: for every memory m in parallel do

10: Reg[m][i].V.write(val, ts)
11: temp[m][1 . . . n]← Reg[m][1..n].read()

12: until completed for majority of memories
13: if ts = temp[1 . . .m][1 . . . n].highestTsp() then return (val)
14: ts← ts + n

Problem 2. Consider the following variant of the Non-equivocating Broadcast algorithm
seen today in class. Does this algorithm satisfy the Non-Equivocating Broadcast properties?
Why or why not?

Algorithm 2 Non-equivocating Broadcast

1: procedure Broadcast(m)
2: R[s].write(m)

3: procedure Receive
4: senderMsg = R[s].read()
5: for i = 1 . . . n do
6: recvMsg = R[i].read()
7: if recvMsg 6= ⊥ ∧ recvMsg 6= senderMsg then
8: . found conflicting values (Byzantine sender), don’t deliver
9: return

10: R[i].write(senderMsg)
11: deliver(senderMsg)

p-1


