
New Technologies in
Distributed Computing

Igor Zablotchi

Based on joint work with
Marcos Aguilera, Naama Ben-David, Nachshon Cohen, Tudor David,

Aleksandar Dragojevic, Rachid Guerraoui, Virendra Marathe

[Some slides courtesy of Naama Ben-David and Tudor David]

1

Introduction
• So far: “traditional” concurrent objects

• Registers
• CAS
• etc.

• Studied for decades & understood well

2

Introduction
• New technologies are constantly being developed
• They come with opportunities, but also with

challenges
• In this lecture, two new technologies

• RDMA
• Persistent Memory

• Both topics of ongoing research

3

Part 1
RDMA

4

Outline
• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults

5

Remote Direct Memory Access (RDMA)

6

Memory

CPU

NICMemory

CPU

NIC

RDMA: No
involvement of host

CPU!

(Network Interface Card)

What is RDMA?

7

Memory

CPU

NIC

p1
p2

p3

p4

p5

p6

p1: read
p3: write
p6: read & write
p2, p5: none

•Can choose RDMA connections
and permissions

• Can give different permissions for
different memory regions

R1 R2 R3
p1: read
p3: write
p6: read & write
p2, p5: none

R1
R1& R2
R2
—

Process failure

Memory failure

What is RDMA?

Outline
• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults

8

9

p1
p2

p3

p4

p5

p6

p1
p2

p3

p4

p5

p6

p1 p2 p3 p4 p5 p6

Only represent memory connections
Memories

Processes

Memory

Modelling RDMA

p1 p2 p3 p4 p5 p6

• Decouple processes and memory

• changePermission function can be
called on memories

• Failures can occur on processes or
memory

• When memory fails, all regions fail
together

• We only consider RW memory
(registers)

R1 R2 R3

10

Protocol
specifies

response to
permission

requests

Request
permission for

p5

Modelling RDMA

Outline
• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults

11

Refresher: O-Consensus
propose(v):
while(true)
Reg[i].T.write(ts);
val := Reg[1,..,n].highestTspValue();
if val = ⊥ then val := v;
Reg[i].V.write(val,ts);
if ts = Reg[1,..,n].highestTsp() then

return(val)
ts := ts + n

12

Paxos in Shared Memory

!What if memory can fail? !

This assumes that shared memory never fails.

announce my timestamp adopt
value with
highest ts
(or mine if

none)announce my value, ts

if my
timestamp

is the
highest,
decide

All-to-all
Connections

Replication: Treat all memories the same
Send all write/read requests to all memories, wait to hear
acknowledgement from majority

p1 p2 p3 p4 p5 p6

Acks: n1234

Instead of many faulty
memories, we can now think
of one non-faulty memory!

13

Handling Memory Failures

O-Consensus w Memory Failures
Disk Paxos [GafniLamport2002]

propose(v):

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v;
for every memory m in parallel:

Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then

return(val)
ts := ts + n

announce my
timestamp
adopt value
with highest
ts (or mine if

none)

announce
my value, ts

if my
timestamp

is the
highest,
decide

propose(v):

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v;
for every memory m in parallel:

Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then

return(val)
ts := ts + n

O-Consensus w Memory Failures

Why read
again here?

☝Need to
check if I

ran alone!

• If we don’t read again, we might miss a concurrent
process’s timestamp
• This could lead to violation of agreement

• What if there was another way to determine if there
was a concurrent process?
• We wouldn’t need the last read!
→ better complexity

16

O-Consensus w Memory Failures

Solo Detection w/ Permissions

17

memory

p1

get
permission

ok
write

ok ok
write

Solo Detection w/ Permissions

18

memory

p1

get
permission

ok
write

ok NOT OK
write

p2

get
permission

ok
write ok

Solo Detection w/ Permissions

19

memory

p1

get
permission

ok
write

ok
write

p2

get
permission

ok
write ok

ok

I was running solo (no
one else wrote)

propose(v):

while(true)

ts := ts + n

for every memory m in parallel:
m.getPermission();
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts < temp[1..m][1..n].highestTsp() then continue;
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v;
for every memory m in parallel:

Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if writes succeeded at majority of memories then

return(val)

O-Consensus with
Memory Failures and Permissions

No need to
read again!

Outline
• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults

21

p1 p2 p3 p4 p5 p6

• Decouple processes and memory

• changePermission function can be
called on memories

• Failures can occur on processes or
memory

• Byzantine failures of
processes

• When memory fails, all regions fail
together

R1 R2 R3

22

Protocol
specifies

response to
permission
requests

Request
permission

for p5

Model: +Byzantine Failures

Equivocation

!

p2

p3

m

m

p2

p3

m

m’

Non-equivocating Broadcast
• Liveness: If a correct process p broadcasts m,

then all correct processes eventually deliver m
from p.
• Agreement: If p and q are correct processes, p

delivers m from r, and q delivers m′ from r, then
m=m′ .
• Validity: If a correct process delivers m from p, p

must have broadcast m.

24

NEB in Message Passing
• Requires n=3f+1, where n is the total number of

processes and up to f processes can be Byzantine
• Intuition:

25

A C

B

m m’

✘
! !f

f

f

Adversary can
prevent correct
processes from
communicating

☹

NEB in Shared Memory
• Only requires n>=f+1
• Intuition:

26

A C

B

! !

f

shared memory
Adversary cannot

(completely) prevent
correct processes from

communicating

"

NEB Algorithm—Data
• The processes maintain an array of SWMR

registers R[1..n] (process i is the writer of R[i])
• The registers are initialized to ⊥
• One of the processes (call it s) is the sender, all

processes are receivers

27

NEB Algorithm
• To broadcast m:

• R[s].write(m)

• To receive:
• senderMsg = R[s].read()
• R[i].write(senderMsg)
• for i=1..n

• recvMsg = R[i].read()
• if recvMsg != ⊥ && recvMsg != senderMsg then

• return; // found conflicting values (Byzantine sender), don’t deliver
• deliver(senderMsg)

28

Side note: the sender
cryptographically signs its

message so that Byzantine
processes cannot lie about what

the sender said

Part 2
Persistent Memory

29

Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM

30

Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM

31

What Is Persistent Memory?

32

Access times ~
RAM

Byte 42

Byte 43

Byte-
addressability

Durability in the
face of crashes &

recoveries

Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM

33

Modelling durability

34

p1

p2

p3

arbitrarily slow/crashed

Process delays & crashes

Modelling durability

35

p1

p2

p3

Full-system crash & recover

crash
✘

recovery

✘

✘

contents of shared memory are preserved
local memory is lost

Recall: Atomicity

• Every operation appears to execute at some
indivisible point in time (called linearization point)
between the invocation and reply time events

36

Recall: Atomicity

37

p1

p2

p3

Atomicity & Persistent Memory

• How can we express atomicity in this model?
→ durable linearizability

38

Modelling durability

39

p1

p2

p3

Durable Linearizability

crash
✘

recovery

✘

✘

When there is no crash: durable linearizability = atomicity as before

Modelling durability

40

p1

p2

p3

Durable Linearizability

crash
✘

recovery

✘

✘

When there is no crash: durable linearizability = atomicity as before

State after
recovery reflects

all operations that
completed before

the crash

Modelling durability

41

p1

p2

p3

Durable Linearizability

crash
✘

recovery

✘

✘

Operations that were ongoing during the crash may be kept (reflected
in post-recovery state) or lost (not reflected)

Durable Linearizability

• If:
1. an operation A depends on an operation B, and
2. A is reflected in the post-recovery state,

• Then B must also be reflected in the post-recovery
state.

42

Example

43

p1

p2

p3

crash
✘

recovery

✘

✘

fetch&increment - 0

fetch&increment - 2

fetch&increment - (no response) fetch&increment - 3

Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM

44

Concurrent Data Structures

45

Lists

Trees

Hash tables

Skip lists

Obstacle #1: Caches are Volatile

46

Processor Caches

Persistent Memory
Volatile Non-Volatile

Obstacle #2: (Re-)ordering

47

Processor Caches

Persistent Memory

Obstacles Illustrated

48

1: mark memory as allocated
2: initialize memory

3: change link of node 1
4: change link of node 2

5: done = 1

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1

crash

Upon restart: incorrect state

Obstacles Illustrated

49

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1
crash

Upon restart: incorrect state

1: mark memory as allocated
2: persist allocation
3: initialize memory

4: persist memory content
5: change link of node 1

6: persist new link
7: change link of node 2
8: persist modified link

9: done = 1

Obstacles Illustrated

50

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:
1: mark allocation
2: initialize mem
3: change link 1crash

Upon restart: incomplete operation

1: mark memory as allocated
2: persist allocation
3: initialize memory

4: persist memory content
5: change link of node 1

6: persist new link
7: change link of node 2
8: persist modified link

9: done = 1

Common Solution: Logging

51

1: log[0] = starting transaction X
2: persist log[0]

3: log[1] = allocating a node at address A
4: persist log[1]

5: mark memory as allocated
6: persist allocation
7: initialize memory

8: persist memory content
9: log[2] = previous value of link

10: persist log[2]
11: change link 1

12: persist modified link
13: log[3] = previous value of link

14: persist log[3]
15: change link 2

16: persist modified link
17: done = 1

18: persist done
19: mark transaction X as finished

Frequent waiting for data to be persisted

The Problem with Logging
• Logging -> frequent waiting

• slows down data structure performance
• Data structure performance is essential to overall

system performance

52

The solution: reduce (or eliminate) logging

Recall: Durable Linearizability
• After a restart, the structure reflects:

• all operations completed (linearized) before the crash;
• (potentially) some operations that were ongoing when

the crash occurred;

53

persist

1. Persistently allocate and initialize node
2. Add link to new node

3. Persist link to new node

If crash between
steps 2 and 3,

violation of
durable

linearizability

Log-free Data Structures
• The main idea: use lock-free algorithms

• They never leave the structure in an inconsistent state
• No need for logging in the data structure algorithm

54

Log-free Data Structures

55

persi
st

1. Persistently allocate and initialize node
2. Add marked link to new node

3. Persist link to new node
4. Remove mark

Other threads - persist marked link if needed

Link-and-persist: atomic “modify” and “persist” link

Going Further: Batching

56

CLWB A
CLWB B

CLWB C
Batching write-backs:

beneficial for performance
time

cache line write-back

store fence

Going Further: Batching
• A link only needs to be persisted when an operation

depends on it
• Store all un-persisted links in a fast concurrent cache
• When an operation directly depends on a link in the cache:

batch write-backs of all links in the cache
(and empty the cache)

57

key 1 link addr1

key z link addr z

key y link addr y

Insert(X) X link addr X

Read(X)
…

write-back all links

link cache

Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM

58

You Can’t Eliminate Fences
• For any lock-free concurrent implementation of a

persistent object
• there exists an execution E such that
• in E, every update operation performs at least 1

persistent fence

59

Lower Bound: Sequential Case

60

p1

p2

p3

update

update

update

Lower Bound: Sequential Case

61

p1 ✘

p2 ✘

p3 ✘

update

crash

update

update

Lower Bound: Sequential Case

62

p1 ✘

p2 ✘

p3 ✘

update

crash

if (result = SUCCESS) {
print(“Done”);

}
update

update

Lower Bound: Sequential Case

63

p1 ✘

p2 ✘

p3 ✘

update

update

update
crash

Need at least 1 persistent fence for every update.

Lower Bound: Concurrent Case

64

p1 update

p2 update

Lower Bound: Concurrent Case

65

p1 update

p2 update

I’ll just let p1
perform the

fence for
both of us

Lower Bound: Concurrent Case

66

p1 update

p2 update

! delayed before
fence

Lower Bound: Concurrent Case

67

p1 update

p2 update

! delayed before
fence

Needs to
perform its own
fence

Lower Bound: Concurrent Case

68

p1 update

p2 update

! delayed before
fence

Needs to
perform its own
fence

Both processes perform one fence per update
operation.

