New Technologies in
Distributed Computing

lgor Zablotchi

Based on joint work with
Marcos Aguilera, Naama Ben-David, Nachshon Cohen, Tudor David,
Aleksandar Dragojevic, Rachid Guerraoui, Virendra Marathe

[Some slides courtesy of Naama Ben-David and Tudor David]

Microsoft A: ORACLE

Research 2 Labs

Introduction

III

» So far: "traditional” concurrent objects

* Registers
 CAS
e etc.

e Studied for decades & understood well

Introduction

* New technologies are constantly being developed

* They come with opportunities, but also with
challenges

* |n this lecture, two new technologies

- RDMA
* Persistent Memory

* Both topics of ongoing research

Part 1

Outline

* What is RDMA?

* How we model RDMA

 Notable Results: consensus with RDMA

* Crash faults
* Byzantine faults

What is RDMA?

Remote Direct Memory Access (RDMA)

[

]
V:"!‘;% N\ (Networlf Interfase Card)
DL TR

7 - .

[

RDMA: No
lavolvement of hosit
CPU!

What is RDMA?

® Can choose RDMA connections
and permissions

® (Can give different permissions for
different memory regions

Memory failure

p1: read R1
p3: write R1& R2
p6: read & write R2
p2, p5: none —

Process failure

Outline

 What is RDMA?
e How we model RDMA

 Notable Results: consensus with RDMA

* Crash faults
* Byzantine faults

Modelling RDMA

Modelling RDMA

Decouple processes and memory

changePermission function can be
called on memories

Failures can occur on processes or
memory

When memory fails, all regions fail
together

We only consider RW memory
(registers)

10

Protocol
specifies
response to
permission
requests

‘(g)l an

Request

permission for
0)9)

Outline

 What is RDMA?
e How we model RDMA

 Notable Results: consensus with RDMA

* Crash faults
* Byzantine faults

1

Refresher: O-Consensus

Paxos in Shared Memory

propose(V):

while(true)
Reg[i] .T.wr‘ite(ts); > announce my timestamp
val := Reg[1,..,n].highestTspValue();
if val = 1 then val := v;
Reg[i].V.write(val,ts);
if ts = Reg[l,..,n].highestTsp() then

> ifmy

r‘etur‘n(val) Jtimestamp
. is the
ts := ts + n highest,
decide

This assumes that shared memory never fails.

2 What if memory can fail?

Handling Memory Failures

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear
acknowledgement from majority

! | | ! / ! Instead of many faulty |

\ _all ' memories, we can now think
- 0/(®
D1 2 p3
13

ctions i of one non-faulty memory! |

P4 PS5 Peé

O-Consensus w Memory Failures

Disk Paxos [GafniLamport2002]

propose(Vv):
while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1l..n].read();
until completed for majority of memories
val := temp[l..m][1l..n].highestTspValue();
if val = L then val := v;
for every memory m in parallel:
Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1l..n].read();
until completed for majority of memories
if ts = temp[l..m][1l..n].highestTsp() then
return(val)
ts := ts + n

Ve

announce my
timestamp

if my
timestamp
is the
highest,
decide

O-Consensus w Memory Failures

propose(Vv):
while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1l..n].read();
until completed for majority of memories
val := temp[l..m][1l..n].highestTspValue();
if val = L then val := v;

Why read
again here?

for every memory m in parallel:
Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1l..n].read();

until completed for majority of memories

if ts = temp[l..m][1l..n].highestTsp() then
return(val)

ts := ts + n

« Needto
check if |
ran alone!

O-Consensus w Memory Failures

* [f we don't read again, we might miss a concurrent
process’'s timestamp

 This could lead to violation of agreement

* What if there was another way to determine if there
was a concurrent process?

 We wouldn't need the last read!
—> better complexity

Solo Detection w/ Permissions

get ok ok
permission write write

memory

Solo Detection w/ Permissions

P1
get ok ok
permission\ / writx / Writ(x / NOT OK
m

emory

Solo Detection w/ Permissions

4 N

| was running solo (no
one else wrote)

= o

get ok ok
permission write write

memory

gst ok
>

P2

O-Consensus with

propose(Vv):
while(true)
ts = ts + n

for every memory m in parallel:
m.getPermission();
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1l..n].read();

until completed for majority of memories

if ts < temp[l..m][1..n].highestTsp() then continue;

val := temp[l..m][1..n].highestTspValue();

if val = 1 then val := v;

for every memory m in parallel:
Reg[m][i].V.write(val,ts);

until completed for majority of memories

if writes succeeded at majority of memories then
return(val)

Memory Failures and Permissions

No need to
read again!

Outline

 What is RDMA?
* How we model RDMA

 Notable Results: consensus with RDMA
* Crash faults

* Byzantine faults

Decouple processes and memory

changePermission function can be
called on memories

Failures can occur on processes or
memory

* Byzantine failures of
processes

When memory fails, all regions falil
together

22

Model: +Byzantine Failures

/

\

Request
permission
for p5

‘(g)l an

Protocol
specifies

response to
permission
requests

Equivocation

Non-equivocating Broadcast

 Liveness: If a correct process p broadcasts m,
then all correct processes eventually deliver m
from p.

 Agreement: If p and g are correct processes, p
delivers m from r, and g delivers m’from r, then
m=m".

o Validity: If a correct process delivers mfrom p, p
must have broadcast m.

NEB in Message Passing

* Requires n=3f+1, where n is the total number of
processes and up to f processes can be Byzantine

* |Intuition:

Adversary can

- prevent correct
Q) processes from
communicating

NEB in Shared Memory

* Only requires n>=f+1
* [ntuition:

,’ 0
shared memory g

Adversary cannot
(completely) prevent

correct processes from
f B communicating

20

NEB Algorithm—Data

* The processes maintain an array of SWMR
registers R[1..n] (process i is the writer of R[i])

* The registers are initialized to 1

* One of the processes (call it s) is the sender, all
Processes are receivers

NEB Algorithm

Side note: the sender

e To broadcast m: cryptographically signs its

; message so that Byzantine
* R [S] 'erte(m) processes cannot lie about what

the sender said

* Toreceive:
* senderMsg = R[s].read()
* R[i].write(senderMsg)
e fori=1..n
* recvMsg = R[i].read()

e ifrecvMsg != 1 && recvMsg != senderMsg then
 return; // found conflicting values (Byzantine sender), don't deliver

 deliver(senderMsg)

Part 2
Persistent Memory

Outline

* What is persistent memory?

* How to define correctness for PM?
» Data Structures for PM

* A Lower Bound for PM

Outline

* What is persistent memory?

 How to define correctness for PM?
e Data Structures for PM
A Lower Bound for PM

31

What Is Persistent Memory?

I
G5)
Durability in the Access times ~
face of crashes & Byte- RAM

recoveries

addressabillity

Outline

* What is persistent memory?

* How to define correctness for PM?
» Data Structures for PM

* A Lower Bound for PM

33

Modelling durability

Process delays & crashes

arbitrarily slow/crashed /

34

Modelling durability

Full-system crash & recover

crash recovery

contents of shared memory are preserved
local memory is lost

Recall: Atomicity

» Every operation appears to execute at some
iIndivisible point in time (called linearization point)
between the invocation and reply time events

Recall: Atomicity

37

Atomicity & Persistent Memory

* How can we express atomicity in this model?
—> durable linearizability

Modelling durability

Durable Linearizability

crash recovery

P3 ® X %Q

When there is no crash: durable linearizability = atomicity as before
39

Modelling durability

Durable Linearizability

crash recovery
> ° A ;Q \
State after
_, recovery reflects
P — @ X }2 all operations that

completed before
/ the crash

When there is no crash: durable linearizability = atomicity as before

P3 ® X ?/Z

Modelling durability

Durable Linearizability

crash recovery

P3 X O ?/Z

Operations that were ongoing during\§ crash may be (reflected
in post-recovery state) or lost (not reflected)

41

Durable Linearizability

o |f:
1. an operation A depends on an operation B, and
2. Aisreflected in the post-recovery state,

* Then B must also be reflected in the post-recovery
state.

Example

fetch&increment - 0

fetch&increment - (no response)

fetch&increment - 2

crash recovery

fetch&increment - 3

43

Outline

* What is persistent memory?

* How to define correctness for PM?
» Data Structures for PM

* A Lower Bound for PM

44

Concurrent Data Structures

Lists
Linux
;'(/

Trees -y

Hash tables -~ . My
[
‘ LEVELDB
monetdb) v -
Skip lists

’ mongoDB |

Obstacle #1: Caches are Volatile

B —
———— S

l-
—-——————__—

Volatile

Obstacle #2: (Re-)ordering

= E/

Caches

Processor

Persistent Memory

47

Obstacles lllustrated

1: mark memory as allocated .
2: 1nitiallize memory erte baCk CaChe.
3: change link of node 1 1: mark allocation
4: change link of node 2 2: 1nltialize mem
5: done = 1 3: change 1link 1
4: change 1link 2
5: done =1
NV memory:

<\\§Crash 3: change 1link 1

5: done = 1

Upon restart: incorrect state

Obstacles lllustrated

1: mark memory as allocated
2: persist allocation
3: 1nitiallize memory
4: persist memory content
5: change link of node 1
6: persist new link
7: change link of node 2
8: persist modified link

9: done =1 4:17

NV memory:

3: change 1link 1
<%\§crash

5: done = 1

erte back cache:
mark allocation
initiallize mem
change 1link 1
change 1link 2
done = 1

U‘Il-b(JONI—‘

Upon restart: incorrect state

Obstacles lllustrated

1: mark memory as allocated Write-back cache:
2: persist allocation

3: 1nitiallize memory
4: persist memory content
5: change link of node 1
6: persist new link
7: change link of node 2
8: persist modified link

9: done =1 4:17

NV memory:
1l: mark allocation
2: 1nitialize mem

<\\§Crash 3: change link 1

mark allocation
initialize mem
change link 1
change 1link 2
done = 1

O s w N

Upon restart: incomplete operat

Common Solution: Logging

1: 1log[0] = starting transaction X
2: persist 1log[0]
3: log[l] = allocating a node at address A

4: persist log[1l]
5: mark memory as allocated
6: persist allocation
7: 1nitialize memory
8: persist memory content
9: log[Z2] = previous value of 1link
10: persist logl[2]
11: change link 1
12: persist modified link
13: log[3] = previous value of 1link
14: persist logl[3]
15: change link 2
16: persist modified link
17: done =1
18: persist done
19: mark transaction X as finished

Frequent waiting for data to be persisted

o

The Problem with Logging

* Logging -> frequent waiting
* slows down data structure performance

» Data structure performance is essential to overall
system performance

Recall: Durable Linearizability

o After a restart, the structure reflects:

* all operations completed (linearized) before the crash;

* (potentially) some operations that were ongoing when
the crash occurred,;

persist .
If crash between

steps 2 and 3, 1. Persistently al!ocate and initialize
violation of 2. Add link to new node

durable 3. Persist link to new node
linearizabilit 53

Log-free Data Structures

* The main idea: use lock-free algorithms

* They never leave the structure in an inconsistent state
* No need for logging in the data structure algorithm

Log-free Data Structures

persi
st

1. Persistently allocate and initialize node
2. Add marked link to new node
3. Persist link to new node
4. Remove mark

Other threads - persist marked link if needed

Link-and-persist: atomic “modify"” and “persist” link

55

Going Further: Batching

cache line write-back

CLWEA {/ store fence

CLWBB
CLWBC

time Batching write-backs:

beneficial for performance

56

Going Further: Batching

* Alink only needs to be persisted when an operation
depends on it

» Store all un-persisted links in a fast concurrent cache
* When an operation directly depends on a link in the cache:
batch write-backs of all links in the cache

(and empty the cache)

link cache

Insert(X)

Rea.; (Write-back all links

Outline

* What is persistent memory?
 How to define correctness for PM?
e Data Structures for PM

A Lower Bound for PM

58

You Can't Eliminate Fences

* For any lock-free concurrent implementation of a
persistent object

e there exists an execution E such that

* INn E, every update operation performs at least 1
persistent fence

Lower Bound: Sequential Case

Pq—

update

P2

update

P3

update

60

Lower Bound: Sequential Case

Pq

update

P2

update

P3

update

Lower Bound: Sequential Case

Pq

update

P2

update

H(_ __________

P3

update

\if (result = SUCCESS) {

X_____

}

print(“Done”);

Lower Bound: Sequential Case

o, — update X

P2

P3

\ update — X

\ update / .

\ T/

Need at least 1 persistent fence for every update.

63

Lower Bound: Concurrent Case

P

P2

update

update

Lower Bound: Concurrent Case

P

P2

update

update

perform the

fence for
both of u

65

Lower Bound: Concurrent Case

& delayed before

of update

B update

Lower Bound: Concurrent Case

& delayed before

of update

B update

\ Needs to
perform its own

fence

Lower Bound: Concurrent Case

P

P2

& delayed before

Needs to
perform its own
fence

Both processes perform one fence per update
operation.

