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Introduction
• So far: “traditional” concurrent objects

• Registers
• CAS
• etc.

• Studied for decades & understood well
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Introduction
• New technologies are constantly being developed
• They come with opportunities, but also with 

challenges 
• In this lecture, two new technologies

• RDMA
• Persistent Memory

• Both topics of ongoing research
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Part 1
RDMA
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Outline
• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults
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Remote Direct Memory Access (RDMA)
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Memory

CPU

NICMemory

CPU

NIC

RDMA: No 
involvement of host 

CPU!

(Network Interface Card)

What is RDMA?
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Memory

CPU

NIC

p1
p2

p3

p4

p5

p6

p1: read 
p3: write
p6: read & write
p2, p5: none

•Can choose RDMA connections
and permissions

• Can give different permissions for 
different memory regions

R1 R2 R3
p1: read
p3: write
p6: read & write 
p2, p5: none

R1
R1& R2
R2
—

Process failure

Memory failure

What is RDMA?



Outline
• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults
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p1
p2

p3

p4

p5

p6

p1
p2

p3

p4

p5

p6

p1 p2 p3 p4 p5 p6

Only represent memory connections
Memories

Processes

Memory

Modelling RDMA



p1 p2 p3 p4 p5 p6

• Decouple processes and memory

• changePermission function can be 
called on memories

• Failures can occur on processes or 
memory

• When memory fails, all regions fail 
together

• We only consider RW memory 
(registers)

R1 R2 R3
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Protocol 
specifies 

response to 
permission 

requests

Request 
permission for 

p5

Modelling RDMA



Outline
• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults
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Refresher: O-Consensus 
propose(v): 
while(true) 
Reg[i].T.write(ts); 
val := Reg[1,..,n].highestTspValue();
if val = ⊥ then val := v; 
Reg[i].V.write(val,ts); 
if ts = Reg[1,..,n].highestTsp() then 

return(val) 
ts := ts + n
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Paxos in Shared Memory

!What if memory can fail? !

This assumes that shared memory never fails.

announce my timestamp adopt
value with
highest ts
(or mine if 

none)announce my value, ts

if my 
timestamp 

is the 
highest, 
decide



All-to-all
Connections

Replication: Treat all memories the same
Send all write/read requests to all memories, wait to hear 
acknowledgement from majority

p1 p2 p3 p4 p5 p6

Acks:  n1234

Instead of many faulty 
memories, we can now think 
of one non-faulty memory!
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Handling Memory Failures



O-Consensus w Memory Failures
Disk Paxos [GafniLamport2002]

propose(v): 

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v; 
for every memory m in parallel:

Reg[m][i].V.write(val,ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then 

return(val) 
ts := ts + n

announce my 
timestamp
adopt value
with highest
ts (or mine if 

none)

announce 
my value, ts

if my 
timestamp 

is the 
highest, 
decide



propose(v): 

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v; 
for every memory m in parallel:

Reg[m][i].V.write(val,ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then 

return(val) 
ts := ts + n

O-Consensus w Memory Failures

Why read 
again here?

☝Need to 
check if I 

ran alone!



• If we don’t read again, we might miss a concurrent 
process’s timestamp
• This could lead to violation of agreement

• What if there was another way to determine if there 
was a concurrent process?
• We wouldn’t need the last read! 
→ better complexity
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O-Consensus w Memory Failures



Solo Detection w/ Permissions
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memory

p1

get 
permission

ok
write

ok ok
write



Solo Detection w/ Permissions
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memory

p1

get 
permission

ok
write

ok NOT OK
write

p2

get 
permission

ok
write ok



Solo Detection w/ Permissions
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memory

p1

get 
permission

ok
write

ok
write

p2

get 
permission

ok
write ok

ok

I was running solo (no 
one else wrote)



propose(v): 

while(true)

ts := ts + n

for every memory m in parallel:
m.getPermission();
Reg[m][i].T.write(ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts < temp[1..m][1..n].highestTsp() then continue;
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v; 
for every memory m in parallel:

Reg[m][i].V.write(val,ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if writes succeeded at majority of memories then 

return(val) 

O-Consensus with 
Memory Failures and Permissions

No need to 
read again!



Outline
• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults
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p1 p2 p3 p4 p5 p6

• Decouple processes and memory

• changePermission function can be 
called on memories

• Failures can occur on processes or 
memory

• Byzantine failures of 
processes

• When memory fails, all regions fail 
together

R1 R2 R3
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Protocol 
specifies 

response to 
permission 
requests

Request 
permission 

for p5

Model: +Byzantine Failures



Equivocation

!

p2

p3

m

m

p2

p3

m

m’



Non-equivocating Broadcast
• Liveness: If a correct process p broadcasts m, 

then all correct processes eventually deliver m
from p. 
• Agreement: If p and q are correct processes, p

delivers m from r, and q delivers m′ from r, then 
m=m′ . 
• Validity: If a correct process delivers m from p, p

must have broadcast m.
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NEB in Message Passing
• Requires n=3f+1, where n is the total number of 

processes and up to f processes can be Byzantine
• Intuition:
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A C

B

m m’

✘
! !f

f

f

Adversary can 
prevent correct 
processes from 
communicating

☹



NEB in Shared Memory
• Only requires n>=f+1
• Intuition:
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A C

B

! !

f

shared memory
Adversary cannot 

(completely) prevent 
correct processes from 

communicating

"



NEB Algorithm—Data
• The processes maintain an array of SWMR 

registers R[1..n] (process i is the writer of R[i])
• The registers are initialized to ⊥
• One of the processes (call it s) is the sender, all 

processes are receivers
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NEB Algorithm
• To broadcast m:

• R[s].write(m)

• To receive:
• senderMsg = R[s].read()
• R[i].write(senderMsg)
• for i=1..n

• recvMsg = R[i].read()
• if recvMsg != ⊥ &&  recvMsg != senderMsg then 

• return; // found conflicting values (Byzantine sender), don’t deliver 
• deliver(senderMsg)
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Side note: the sender 
cryptographically signs its 

message so that Byzantine 
processes cannot lie about what 

the sender said 



Part 2
Persistent Memory

29



Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM
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Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM
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What Is Persistent Memory?

32

Access times ~ 
RAM

Byte 42

Byte 43

Byte-
addressability

Durability in the 
face of crashes & 

recoveries



Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM
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Modelling durability 

34

p1

p2

p3

arbitrarily slow/crashed

Process delays & crashes



Modelling durability 
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p1

p2

p3

Full-system crash & recover

crash
✘

recovery

✘

✘

contents of shared memory are preserved
local memory is lost



Recall: Atomicity

• Every operation appears to execute at some 
indivisible point in time (called linearization point) 
between the invocation and reply time events
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Recall: Atomicity
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p1

p2

p3



Atomicity & Persistent Memory

• How can we express atomicity in this model?
→ durable linearizability
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Modelling durability 
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p1

p2

p3

Durable Linearizability

crash
✘

recovery

✘

✘

When there is no crash: durable linearizability = atomicity as before



Modelling durability 
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p1

p2

p3

Durable Linearizability

crash
✘

recovery

✘

✘

When there is no crash: durable linearizability = atomicity as before

State after 
recovery reflects 

all operations that 
completed before 

the crash



Modelling durability 
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p1

p2

p3

Durable Linearizability

crash
✘

recovery

✘

✘

Operations that were ongoing during the crash may be kept (reflected 
in post-recovery state) or lost (not reflected)



Durable Linearizability

• If:
1. an operation A depends on an operation B, and 
2. A is reflected in the post-recovery state, 

• Then B must also be reflected in the post-recovery 
state.
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Example
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p1

p2

p3

crash
✘

recovery

✘

✘

fetch&increment - 0

fetch&increment - 2

fetch&increment - (no response) fetch&increment - 3



Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM
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Concurrent Data Structures
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Lists

Trees

Hash tables

Skip lists



Obstacle #1: Caches are Volatile
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Processor Caches

Persistent Memory
Volatile Non-Volatile



Obstacle #2: (Re-)ordering
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Processor Caches

Persistent Memory



Obstacles Illustrated
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1: mark memory as allocated
2: initialize memory

3: change link of node 1
4: change link of node 2

5: done = 1

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1

crash

Upon restart: incorrect state



Obstacles Illustrated
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Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1
crash

Upon restart: incorrect state

1: mark memory as allocated
2: persist allocation
3: initialize memory

4: persist memory content
5: change link of node 1

6: persist new link
7: change link of node 2
8: persist modified link

9: done = 1



Obstacles Illustrated
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Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:
1: mark allocation
2: initialize mem
3: change link 1crash

Upon restart: incomplete operation

1: mark memory as allocated
2: persist allocation
3: initialize memory

4: persist memory content
5: change link of node 1

6: persist new link
7: change link of node 2
8: persist modified link

9: done = 1



Common Solution: Logging
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1: log[0] = starting transaction X
2: persist log[0]

3: log[1] = allocating a node at address A
4: persist log[1]

5: mark memory as allocated
6: persist allocation
7: initialize memory

8: persist memory content
9: log[2] = previous value of link

10: persist log[2]
11: change link 1

12: persist modified link
13: log[3] = previous value of link

14: persist log[3]
15: change link 2

16: persist modified link
17: done = 1

18: persist done
19: mark transaction X as finished

Frequent waiting for data to be persisted



The Problem with Logging
• Logging -> frequent waiting 

• slows down data structure performance
• Data structure performance is essential to overall 

system performance
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The solution: reduce (or eliminate) logging



Recall: Durable Linearizability
• After a restart, the structure reflects:

• all operations completed (linearized) before the crash;
• (potentially) some operations that were ongoing when 

the crash occurred; 
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persist

1. Persistently allocate and initialize node
2. Add link to new node

3. Persist link to new node

If crash between 
steps 2 and 3, 

violation of 
durable 

linearizability



Log-free Data Structures
• The main idea: use lock-free algorithms 

• They never leave the structure in an inconsistent state
• No need for logging in the data structure algorithm
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Log-free Data Structures

55

persi
st

1. Persistently allocate and initialize node
2. Add marked link to new node

3. Persist link to new node
4. Remove mark

Other threads - persist marked link if needed

Link-and-persist: atomic “modify” and “persist” link



Going Further: Batching
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CLWB A
CLWB B

CLWB C
Batching write-backs: 

beneficial for performance
time

cache line write-back

store fence



Going Further: Batching
• A link only needs to be persisted when an operation 

depends on it
• Store all un-persisted links in a fast concurrent cache
• When an operation directly depends on a link in the cache:

batch write-backs of all links in the cache 
(and empty the cache)
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key 1 link addr1

key z link addr z

key y link addr y

Insert(X) X link addr X

Read(X)
…

write-back all links

link cache



Outline
• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM
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You Can’t Eliminate Fences
• For any lock-free concurrent implementation of a 

persistent object
• there exists an execution E such that
• in E, every update operation performs at least 1 

persistent fence
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Lower Bound: Sequential Case

60

p1

p2

p3

update

update

update



Lower Bound: Sequential Case
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p1 ✘

p2 ✘

p3 ✘

update

crash

update

update



Lower Bound: Sequential Case
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p1 ✘

p2 ✘

p3 ✘

update

crash

if (result = SUCCESS) {
print(“Done”);

}
update

update



Lower Bound: Sequential Case

63

p1 ✘

p2 ✘

p3 ✘

update

update

update
crash

Need at least 1 persistent fence for every update.



Lower Bound: Concurrent Case
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p1 update

p2 update



Lower Bound: Concurrent Case
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p1 update

p2 update

I’ll just let p1 
perform the 

fence for 
both of us



Lower Bound: Concurrent Case
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p1 update

p2 update

! delayed before 
fence



Lower Bound: Concurrent Case
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p1 update

p2 update

! delayed before 
fence

Needs to 
perform its own 
fence



Lower Bound: Concurrent Case
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p1 update

p2 update

! delayed before 
fence

Needs to 
perform its own 
fence

Both processes perform one fence per update 
operation.


