
1

Generalized
Universality

2

Consensus

output = propose(input)

Processes propose each a value and agree on one

consensus
c

c
c’

c
p1 p2

3

Universal Construction

Every process holds a copy of the - simulated - machine

Every process holds a list of commands for the machine

All processes share a list of consensus objects

4

Universal Construction

p1 p2

cons1

cons2

…

consK

…

sM sM

5

Universal Construction

§ while(true)

§ c = commands.next()
§ cons = Consensus.next()

§ c� = cons.propose(c)
§ sM.perform(c�)

6

Universal Construction

p1 p2

cons1

cons2

…

consK

…

sM+c1 sM+c1
c1

c1

c2

c1

c1’

c1’ c2

c1’
sM+c1’sM+c1’

7

What if consensus is not available
[FLP,CHT,DFG]

Consensus

8

K-Consensus

(i,c) = propose(kVect)

k-consensus

vect

(i,c)

vect

(i’,c’)

p1 p2

Every process proposes a vector of k values and
returns a value at some position (Chauduri et al)

9

K-Consensus

§ Validity: the value returned at any position has
been proposed at that position

§ Agreement: no two values returned at the same
position are different

§ Termination: every correct process that
proposes eventually returns

10

1

2 3

Sperner’s Lemma

2 3

k+1-consensus is strictly weaker than k-consensus
in any system of at least k+1 processes

(Godel prize 2004 – HS,BG,SZ 93)

For any distributed computing task T, there is a k
such that T ó k-consensus (FDGT 2010)

11

Generalized Universality

With consensus

We implement k state machines of which at least
one is highly-available

We implement a highly-available state machine

With k-consensus

What form of universality with
K-consensus?

12

Generalized Universality
Every process holds a copy of each of the machines

sM(i) - and a lists of commands for each

p1

(sM1,sM2)

The processes share a list of k-vector consensus objects

p2

(sM1,sM2)

VectCons1

VectCons2

…

13

Universal Construction

§ while(true)
§ c = commands.next()
§ cons = consensus.next()

§ c� = cons.propose(c)
§ sM.perform(c�)

14

Universal Construction

p1 p2

cons1

cons2

…

consK

…

sM sM
c1

c1

c1’

c1

15

Generalized Universality?

§ while(true)
§ for j = 1 to k: com(j) = commands(j).next()
§ kVectC = kVectCons.next()

§ (c,i) = kVectC.propose(com)
§ sM(i).perform(c)

16

p1 p2

VectCons1

VectCons2

…

(sM1,sM2)

(c1,c2)

(1,c1)

(c1’,c2’)

(2.c2’)

(d1,c2)

(2,c2)

sM1+c1 sM2+c2’

sM2+c2

(sM1,sM2)

Problem with safety

17

Generalized Universality

§ while(true)
§ for j = 1 to k: com(j) = commands(j).next()
§ kVectC = kVectCons.next()

§ (c,i) = kVectC.propose(com)
§ check other processes for any missing c�
§ sM(i).perform(c)
§ inform other processes about c

18

Generalized Universality
p1

VectCons1

VectCons2

…

(sM1,sM2)
(c1,c2)

(1,c1)

(d1,c2)

(2,c2)
?

Share
c1

Share

sM1+c1

p2

(c1’,c2’)

(2.c2’)
sM2+c2’

(sM1,sM2)

c2’

19

write (v)
if there is only v, write (commit, v)

if there is only (commit, v), return(commit, v)
if there is (commit, v’), return(adopt, v’)

else return(adopt, v)

1st key idea (ensuring safety)

v1

commit(v)

v2

adopt(v)
commitment

20

Commitment

§ Invariant (1): if a value v is committed then no other
value is returned

§ Invariant (2): if all processes propose the same
value then the value is committed

21

p1 p2

VectCons1

(sM1,sM2)

(1,c1) (2.c2’)

(sM1,sM2)

commitment(1)
c1 skip

Generalized Universality

commitment(2)skip c2’

commit(c1)

commit(c2’)

sM1+c1

22

p1 p2

VectCons1(1,c1) (2.c2’)

(sM1,sM2)

commitment(1)
c1 skip

commitment(2)skip c2’

adopt(c1)

adopt(c2’)

Problem with liveness

23

Can it be that no command is committed? i.e., if every
commitment box has one process proposes skip

2nd key idea (ensuring liveness)

c1

adopt(c1)

c2

adopt(c2)
commitment

Exploit success first

24

Generalized universality (step 0)

§ newCom = commands.next()

§ while(true)

§ kVectC = kVectCons.next()

25

Generalized universality (step 1)

§ …

§ (c,i) = kVectC.propose(newCom)

§ …

26

Generalized universality (step1-2)
§ …

§ (c,i) = kVectC.propose(newCom)

§ vect(i) = commitment(i,c)

§ …

27

Generalized universality (step1-2-2’)
§ …

§ (c,i) = kVectC.propose(newCom)

§ vect(i) = commitment(i,c)

§ for j = 1 to k except i:
§ vect(j) = commitment(j,newCom(j))
…

28

Generalized universality (step 3)
…
for i = 1 to k
§ if ok(vect(i)) then

§ sM(i).perform(vect(i))
§ newCom(i) = commands(i).next()

§ else
§ newCom(i) = vect(i)

29

Generalized universality (step 3’)
…
for i = 1 to k
§ If older(newCom(i),vect(i)) then

sM(i).perform(newCom(i))
§ If no(vect(i)) then newCom(i) = vect(i)
§ else
§ sM(i).perform(vect(i))
§ If vect(i) = newCom(i) then

§ newCom(i) = commands(i).next()
§ add(newCom(i),vect(i))

30

Commitment

§ Safety: a process does not perform a command
unless all others know the command

§ Liveness: at least one process executes a
command in every round

NB. Every correct process executes at least one
command every two rounds

