Generalized
Universality



Consensus

Processes propose each a value and agree on one

output = propose(input)

pl ——
— consensus




Universal Construction

Every process holds a copy of the - simulated - machine

Every process holds a list of commands for the machine

All processes share a list of consensus objects



sM

Universal Construction

consl

cons?2

conskK

sM




Universal Construction

while(true)

c = commands.next()
cons = Consensus.next()

c’ = cons.propose(c)
sM.perform(c’)



sM+cl

sM+cl’

Universal Construction

consl

cons?2

conskK

c2

cl
c2

cl’

sM+cl

sM+cl’




What if consensus is not available
[FLP,CHT,DFG]

Consensus



K-Consensus

Every process proposes a vector of k values and
returns a value at some position (Chauduri et al)

(i,c) = propose(kVect)

vect

vect
pl — 5
«— k-consensus < P
- >

(i,c) (1" ,c’)



K-Consensus

= Validity: the value returned at any position has
been proposed at that position

= Agreement. no two values returned at the same
position are different

= Termination: every correct process that
proposes eventually returns



k+1-consensus is strictly weaker than k-consensus
in any system of at least k+1 processes

(Godel prize 2004 — HS,BG,SZ 93)

1

Sperner’'s Lemma

2 3

For any distributed computing task T, there is a k
such that T < k-consensus (FDGT 2010)

10



What form of universality with

K-consensus?

With consensus
We implement a highly-available state machine

With k-consensus

We implement k state machines of which at least
one is highly-available

Generalized Universality

77



Generalized Universality

Every process holds a copy of each of the machines
sM(i) - and a lists of commands for each

pl VectConsl p2

(sM1,sM2) (sM1,sM2)
VectCons2

The processes share a list of k-vector consensus objects

2



Universal Construction

= while(true)

c = commands.next()
cons = consensus.next()

¢ = cons.propose(c)
sM.perform(c’)

13



sM

Universal Construction

cl

consl

cons?2

conskK

cl’

cl

sM

4



Generalized Universality?

while(true)

for j =1 to k: com(j) = commands(j).next()

kVectC = kVectCons.next()

(c,i) = kVectC.propose(com)
sM(i).perform(c)

15



Problem with safety

pl
(sM1,sM2)
(cl,c2)
sMl+cl —
_
(1,cl)
(dl, c2)
>
sM2+c2 -—

(2,c2)

VectConsl

VectCons2

(cl’ ,c2’

(2.c2')

sM1 , sM2)

sM2+c2’

16




Generalized Universality

while(true)

for j =1 to ki com(j) = commands(j).next()
kVectC = kVectCons.next()

(c,I) = kVectC.propose(com)

check other processes for any missing ¢’
sM(i).perform(c)

inform other processes about c

17



pl

Generalized Universality

(sM1,sM2)

sMl+cl

(cl,c2)

(1,cl)
cl

(d1l,c2)

(2,c2)

VectConsl

Share

Share

VectCons2

p2

(cl’ ,C2’ kSMl,SMZ)

(2.c2')

—

c2’

sM2+c2’

18




1st key idea (ensuring safety)

vl

—_—
«—

commit (v)

write (v)

iIf there is only v, write (commit, v)

commitment

v2

—
—_—

adopt (v)

if there is only (commit, v), return(commit, v)
iIf there is (commit, v’), return(adopt, v’)
else return(adopt, v)

19



Commitment

» Invariant (1) if a value v is committed then no other
value is returned

» Invariant (2): if all processes propose the same
value then the value is committed

20



pl

(sM1, sM2)

sMl+cl

Generalized Universality

(1,cl)

cl

—
€——

cgommit (cl)

—

(2.c2')

VectConsl

skip

—

commitment (1)

, c2’
skip commitment (2) | «——
—> —>

commit (c2’)

p2

(sM1,sM2)

21



Problem with liveness

(1,cl)

cl

S
b—

adopt (cl)

VectConsl

—

(2.c2')

skip

commitment (1)

e

skip

—

commitment (2)

c2’
b
—_—

adopt (c2’)

p2

(sM1, sM2)

22



2nd key idea (ensuring liveness)
Exploit success first

—_— ¢
D commitment —>
adopt(cl) adopt (c2)

Can it be that no command is committed? i.e., if every
commitment box has one process proposes skip

23



Generalized universality (step 0)

* newCom = commands.next()
= while(true)

= kVectC = kVectCons.next()

24



Generalized universality (step 1)

* (c,I) = kVectC.propose(newCom)

25



Generalized universality (step1-2)

* (c,I) = kVectC.propose(newCom)
= vect(i) = commitment(i,c)

26



Generalized universality (step1-2-2')

* (c,I) = kVectC.propose(newCom)
= vect(i) = commitment(i,c)

= for | =1 to k except i:
= vect(j) = commitment(j,newCom(j))

27



Generalized universality (step 3)

fori=1tok
= if ok(vect(i)) then

= sM(i).perform(vect(i))

* newCom(i) = commands(i).next()
= else

= newCom(i) = vect(i)

28



Generalized universality (step 3')

fori=1tok

If older(newCom(i),vect(i)) then
sM(i).perform(newCom(i))

If no(vect(i)) then newCom(i) = vecit(i)
else
sM(i).perform(vect(i))

If vect(i) = newCom(i) then

* newCom(i) = commands(i).next()
add(newCom(i),vect(i))

29



Commitment

= Safety:. a process does not perform a command
unless all others know the command

» Liveness: at least one process executes a
command in every round

NB. Every correct process executes at least one
command every two rounds

30



