Generalized
Universality



Consensus

Processes propose each a value and agree on one

output = propose(input)
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Universal Construction

Every process holds a copy of the - simulated - machine

Every process holds a list of commands for the machine

All processes share a list of consensus objects
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Universal Construction

while(true)

c = commands.next()
cons = Consensus.next()

c’ = cons.propose(c)
sM.perform(c’)
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What if consensus is not available
[FLP,CHT,DFG]
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K-Consensus

Every process proposes a vector of k values and
returns a value at some position (Chauduri et al)

(i,c) = propose(kVect)
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K-Consensus

= Validity: the value returned at any position has
been proposed at that position

= Agreement. no two values returned at the same
position are different

= Termination: every correct process that
proposes eventually returns



k+1-consensus is strictly weaker than k-consensus
in any system of at least k+1 processes

(Godel prize 2004 — HS,BG,SZ 93)
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Sperner’'s Lemma
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For any distributed computing task T, there is a k
such that T < k-consensus (FDGT 2010)
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What form of universality with

K-consensus?

With consensus
We implement a highly-available state machine

With k-consensus

We implement k state machines of which at least
one is highly-available

Generalized Universality
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Generalized Universality

Every process holds a copy of each of the machines
sM(i) - and a lists of commands for each

pl VectConsl p2

(sM1,sM2) (sM1,sM2)
VectCons2

The processes share a list of k-vector consensus objects
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Universal Construction

= while(true)

c = commands.next()
cons = consensus.next()

¢ = cons.propose(c)
sM.perform(c’)
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Generalized Universality?

while(true)

for j =1 to k: com(j) = commands(j).next()

kVectC = kVectCons.next()

(c,i) = kVectC.propose(com)
sM(i).perform(c)
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Problem with safety
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Generalized Universality

while(true)

for j =1 to ki com(j) = commands(j).next()
kVectC = kVectCons.next()

(c,I) = kVectC.propose(com)

check other processes for any missing ¢’
sM(i).perform(c)

inform other processes about c
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1st key idea (ensuring safety)

vl
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commit (v)

write (v)

iIf there is only v, write (commit, v)

commitment

v2

—
—_—

adopt (v)

if there is only (commit, v), return(commit, v)
iIf there is (commit, v’), return(adopt, v’)
else return(adopt, v)
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Commitment

» Invariant (1) if a value v is committed then no other
value is returned

» Invariant (2): if all processes propose the same
value then the value is committed
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Problem with liveness
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2nd key idea (ensuring liveness)
Exploit success first

—_— ¢
D commitment —>
adopt(cl) adopt (c2)

Can it be that no command is committed? i.e., if every
commitment box has one process proposes skip
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Generalized universality (step 0)

* newCom = commands.next()
= while(true)

= kVectC = kVectCons.next()
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Generalized universality (step 1)

* (c,I) = kVectC.propose(newCom)
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Generalized universality (step1-2)

* (c,I) = kVectC.propose(newCom)
= vect(i) = commitment(i,c)
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Generalized universality (step1-2-2')

* (c,I) = kVectC.propose(newCom)
= vect(i) = commitment(i,c)

= for | =1 to k except i:
= vect(j) = commitment(j,newCom(j))
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Generalized universality (step 3)

fori=1tok
= if ok(vect(i)) then

= sM(i).perform(vect(i))

* newCom(i) = commands(i).next()
= else

= newCom(i) = vect(i)
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Generalized universality (step 3')

fori=1tok

If older(newCom(i),vect(i)) then
sM(i).perform(newCom(i))

If no(vect(i)) then newCom(i) = vecit(i)
else
sM(i).perform(vect(i))

If vect(i) = newCom(i) then

* newCom(i) = commands(i).next()
add(newCom(i),vect(i))
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Commitment

= Safety:. a process does not perform a command
unless all others know the command

» Liveness: at least one process executes a
command in every round

NB. Every correct process executes at least one
command every two rounds
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