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In short

This course is about the principles 
of concurrent computing



3

Today

Logistics

Motivation

Content
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WARNING

§ This course is different from the course : 
Distributed Algorithms

§ shared memory vs message passing

§ It does make a lot of sense to take both
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This course
Theoretical but no specific theoretical
background is required

Exercices throughout the semester

Project (30%) + Exam (70%)
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New York Times, 8 May 2004: Major chip 
manufacturers announced what is perceived as 
a major paradigm shift in computing:

Multiprocessors vs Faster processors

Intel … [has] decided to focus its development efforts 
on «dual core» processors … with two engines instead of 
one, allowing for greater efficiency because the 
processor workload is essentially shared.
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Multicores are everywhere

Dual-core commonplace in laptops
Quad-core in desktops
Dual quad-core in servers
All major chip manufacturers produce
multicore CPUs

Oracle Niagara (8 cores, 32 threads)
Intel Xeon (4 cores)
AMD Opteron (4 cores)
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Multicores are everywhere

Quad-core in laptops
Octa-core in desktops
2*12 cores in servers
All major chip manufacturers produce
multicore CPUs

Oracle Sparc (32 cores, 256 threads)
Intel Xeon (12-16 cores)
AMD Opteron (12-16 cores)
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AMD Opteron (4 cores)

L1 cache

L2 cache

L3 cache
(shared)
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Niagara CPU2 (8 cores)
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Multiprocessors

Multiple hardware processors: each executes a
series of processes (software constructs)
modeling sequential programs

Multicore architecture: multiple processors are
placed on the same chip
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Principles of an architecture

Two fundamental components that fall apart:
processors and memory

The Interconnect links the processors with the
memory:
- SMP (symmetric): bus (a tiny Ethernet)
- NUMA (network): point-to-point network
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Cycles

The basic unit of time is the cycle: time to
execute a local instruction

This changes with technology but the relative
cost of instructions (local vs shared) does not
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Abstract view

Memory

Bus

Processor 
+ Cache
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Hardware synchronization objects

The basic unit of communication is the read and
write to the memory (through the cache)

More sophisticated objects are typically provided
and, as we will see, necessary: C&S, T&S,
LL/SC
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The free ride is over

Cannot rely on CPUs getting faster in every
generation

Utilizing more than one CPU core requires
concurrency
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The free ride is over

One of the biggest software challenges:
exploiting concurrency

Every programmer will have to deal with it

Concurrent programming is hard to get right
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Speed will be achieved by having 
several processors work on 
independent parts of a task

But

the processors would occasionally 
need to pause and synchronize
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Shared object

Concurrent processes 
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public class Counter

private int c = 0;

public long getAndIncrement()
{
return c++;
}

Counter
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Locked object

Locking (mutual exclusion)
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public class SynchronizedCounter {
private int c = 0;
public synchronized void increment() {

c++;
}
public synchronized void getAndincrement()

{
return c++;

}
public synchronized int value() {

return c;
}

}

Implicit use of a lock
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Locking with compare&swap()

§ A Compare&Swap object maintains a value x, init 
to ^, and y;

§ It provides one operation: c&s(old,new); 

üSequential spec:   
l c&s(old,new) 
{y := x; if x = old then x := new; return(y)} 
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lock() {
repeat until
unlocked = this.c&s(unlocked,locked)
}

unlock() {
this.c&s(locked,unlocked)

}

Locking with compare&swap() 
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Locking with test&set() 

§ A Test&Set object maintains binary values x, init 
to 0, and y; 

§ It provides one operation: t&s()

üSequential spec:   
ü t&s() {y := x; x: = 1; return(y);}  
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lock() {
repeat until (0 = this.t&s());
}

unlock() {
this.setState(0);

}

Locking with test&set() 
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lock() {
while (true)
{
repeat until (0 = this.getState());
if 0 = (this.t&s()) return(true);
}
}

unlock() {
this.setState(0);

}

Locking with test&set() 
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Lock l = ...;
l.lock();
try {

// access the resource protected by this lock
} finally {

l.unlock();
}

Explicit use of a lock
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Locking (mutual exclusion)

Difficult: 50% of the bugs reported in 
Java come from the mis-use of 
« synchronized » 

Slow: a process holding a lock prevents 
all others from progressing
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Locked object

One process at a time
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Processes are asynchronous

Page faults
Pre-emptions
Failures
Cache misses, …
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Processes are asynchronous

A cache miss can delay a process by ten 
instructions
A page fault by few millions
An os preemption by hundreds of millions… 
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Coarse grained locks => slow

Fine grained locks => errors
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Processes are asynchronous

Page faults, pre-emptions, failures, 
cache misses, …  

A process can be delayed by millions of 
instructions … 
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Alternative to locking?
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Wait-free atomic objects
Wait-freedom: every process that invokes 
an operation eventually returns from the 
invocation (robust … unlike locking)

Atomicity: every operation appears to 
execute instantaneously (as if the object 
was locked…)
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In short

This course studies how to 
wait-free implement high-level 
atomic objects out of primitive base objects



39Shared object

Concurrent processes 
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Roadmap

Model 
Processes and objects
Atomicity and wait-freedom

Examples
Content
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Processes

§ We assume a finite set of processes

§ Processes are denoted by p1,..pN or p, q, r

§ Processes have unique identities and know 
each other (unless explicitly stated 
otherwise)
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Processes

Processes are sequential units of 
computations

Unless explicitly stated otherwise, we make 
no assumption on process (relative) speeds
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Processes

p1

p2

p3
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Processes

A process either executes the algorithm 
assigned to it or crashes
A process that crashes does not recover (in 
the context of the considered computation) 
A process that does not crash in a given 
execution (computation or run) is called 
correct (in that execution)
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Processes

p1

p2

p3

crash
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On objects and processes

Processes execute local computation or 
access shared objects through their 
operations

Every operation is expected to return a reply
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Processes

p1

p2

p3

operation

operation

operation
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On objects and processes
Sequentiality means here that, after 
invoking an operation op1 on some object O1, 
a process does not invoke a new operation (on 
the same or on some other object) until it 
receives the reply for op1

Remark. Sometimes we talk about operations 
when we should be talking about operation 
invocations
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Processes

p1

p2

p3

operation

operation

operation
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Atomicity

Every operation appears to execute at some 
indivisible point in time (called linearization 
point) between the invocation and reply time 
events
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Atomicity

p1

p2

p3

operation

operation

operation
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Atomicity

p1

p2

p3

operation

operation

operation
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Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

crash
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Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2
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Atomicity (the crash case)

p1

p2

p3

operation

operation

p2
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Wait-freedom

Any correct process that invokes an 
operation eventually gets a reply, no matter 
what happens to the other processes (very 
slow or crash)
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Wait-freedom

p1

p2

p3

operation
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Wait-freedom

Wait-freedom conveys the robustness of 
the implementation
With a wait-free implementation, a process 
gets replies despite the crash of the n-1 
other processes 
Note that this precludes implementations 
based on locks (mutual exclusion)
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Wait-freedom

p1

p2

p3

crash

operation

crash
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Roadmap

Model 
Processes and objects
Atomicity and wait-freedom

Examples
Content
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Most synchronization primitives (problems) 
can be precisely expressed as atomic 
objects (implementations)

Studying how to ensure robust 
synchronization boils down to studying 
wait-free atomic object implementations 

Motivation
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Example 1
The reader/writer synchronization problem 
corresponds to the register object
Basically, the processes need to read or 
write a shared data structure such that the 
value read by a process at a time t, is the 
last value written before t
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Register
A register has two operations: read() and 
write()

We assume that a register contains an integer 
for presentation simplicity, i.e., the value stored 
in the register is an integer, denoted by x 
(initially 0)
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Sequential specification
Sequential specification
read()

return(x)
write(v)

x <- v; 
return(ok)
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 1
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0
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Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 1
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Example 2
The producer/consumer synchronization 
problem corresponds to the queue object
Producer processes create items that need 
to be used by consumer processes
An item cannot be consumed by two 
processes and the first item produced is 
the first consumed
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Queue
A queue has two operations: 
enqueue() and dequeue()

We assume that a queue internally 
maintains a list x which exports 
operation appends() to put an item at the 
end of the list and remove() to remove 
an element from the head of the list
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Sequential specification
dequeue()

if(x=0) then return(nil);
else return(x.remove())

enqueue(v)
x.append(v);
return(ok)
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Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok
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Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok
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Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

enq(y) - ok



82

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - x

enq(y) - ok
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Roadmap

Model 
Processes and objects
Atomicity and wait-freedom

Examples
Content
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Content
(1) Implementing registers
(2) The power & limitation of registers
(3) Universal objects & synchronization number
(4) Transactional memory 
(5) The power of time & failure detection
(6) Tolerating failure prone objects 
(7) Anonymous implementations
(8) Non-volatile memory 
(9) Hybrid memory 
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In short

This course studies how to wait-free
implement high-level atomic objects
out of basic objects

Unless explicitly stated otherwise, 
objects mean atomic objects and 
implementations are wait-free 


