
1© R. Guerraoui

Concurrent Algorithms
(Overview)

Prof R. Guerraoui
Distributed Computing Laboratory

- https://dcl.epfl.ch/site/education/ca_2019 -

https://dcl.epfl.ch/site/education/ca_2019

2

In short

This course is about the principles
of concurrent computing

3

Today

Logistics

Motivation

Content

4

WARNING

§ This course is different from the course :
Distributed Algorithms

§ shared memory vs message passing

§ It does make a lot of sense to take both

5

This course
Theoretical but no specific theoretical
background is required

Exercices throughout the semester

Project (30%) + Exam (70%)

6

7

New York Times, 8 May 2004: Major chip
manufacturers announced what is perceived as
a major paradigm shift in computing:

Multiprocessors vs Faster processors

Intel … [has] decided to focus its development efforts
on «dual core» processors … with two engines instead of
one, allowing for greater efficiency because the
processor workload is essentially shared.

8

Multicores are everywhere

Dual-core commonplace in laptops
Quad-core in desktops
Dual quad-core in servers
All major chip manufacturers produce
multicore CPUs

Oracle Niagara (8 cores, 32 threads)
Intel Xeon (4 cores)
AMD Opteron (4 cores)

9

Multicores are everywhere

Quad-core in laptops
Octa-core in desktops
2*12 cores in servers
All major chip manufacturers produce
multicore CPUs

Oracle Sparc (32 cores, 256 threads)
Intel Xeon (12-16 cores)
AMD Opteron (12-16 cores)

10

AMD Opteron (4 cores)

L1 cache

L2 cache

L3 cache
(shared)

11

Niagara CPU2 (8 cores)

12

Multiprocessors

Multiple hardware processors: each executes a
series of processes (software constructs)
modeling sequential programs

Multicore architecture: multiple processors are
placed on the same chip

13

Principles of an architecture

Two fundamental components that fall apart:
processors and memory

The Interconnect links the processors with the
memory:
- SMP (symmetric): bus (a tiny Ethernet)
- NUMA (network): point-to-point network

14

Cycles

The basic unit of time is the cycle: time to
execute a local instruction

This changes with technology but the relative
cost of instructions (local vs shared) does not

15

Abstract view

Memory

Bus

Processor
+ Cache

16

Hardware synchronization objects

The basic unit of communication is the read and
write to the memory (through the cache)

More sophisticated objects are typically provided
and, as we will see, necessary: C&S, T&S,
LL/SC

17

The free ride is over

Cannot rely on CPUs getting faster in every
generation

Utilizing more than one CPU core requires
concurrency

18

The free ride is over

One of the biggest software challenges:
exploiting concurrency

Every programmer will have to deal with it

Concurrent programming is hard to get right

19

Speed will be achieved by having
several processors work on
independent parts of a task

But

the processors would occasionally
need to pause and synchronize

20

Shared object

Concurrent processes

21

public class Counter

private int c = 0;

public long getAndIncrement()
{
return c++;
}

Counter

22

Locked object

Locking (mutual exclusion)

23

public class SynchronizedCounter {
private int c = 0;
public synchronized void increment() {

c++;
}
public synchronized void getAndincrement()

{
return c++;

}
public synchronized int value() {

return c;
}

}

Implicit use of a lock

24

Locking with compare&swap()

§ A Compare&Swap object maintains a value x, init
to ^, and y;

§ It provides one operation: c&s(old,new);

üSequential spec:
l c&s(old,new)
{y := x; if x = old then x := new; return(y)}

25

lock() {
repeat until
unlocked = this.c&s(unlocked,locked)
}

unlock() {
this.c&s(locked,unlocked)

}

Locking with compare&swap()

26

Locking with test&set()

§ A Test&Set object maintains binary values x, init
to 0, and y;

§ It provides one operation: t&s()

üSequential spec:
ü t&s() {y := x; x: = 1; return(y);}

27

lock() {
repeat until (0 = this.t&s());
}

unlock() {
this.setState(0);

}

Locking with test&set()

28

lock() {
while (true)
{
repeat until (0 = this.getState());
if 0 = (this.t&s()) return(true);
}
}

unlock() {
this.setState(0);

}

Locking with test&set()

29

Lock l = ...;
l.lock();
try {

// access the resource protected by this lock
} finally {

l.unlock();
}

Explicit use of a lock

30

Locking (mutual exclusion)

Difficult: 50% of the bugs reported in
Java come from the mis-use of
« synchronized »

Slow: a process holding a lock prevents
all others from progressing

31

Locked object

One process at a time

32

Processes are asynchronous

Page faults
Pre-emptions
Failures
Cache misses, …

33

Processes are asynchronous

A cache miss can delay a process by ten
instructions
A page fault by few millions
An os preemption by hundreds of millions…

34

Coarse grained locks => slow

Fine grained locks => errors

35

Processes are asynchronous

Page faults, pre-emptions, failures,
cache misses, …

A process can be delayed by millions of
instructions …

36

Alternative to locking?

37

Wait-free atomic objects
Wait-freedom: every process that invokes
an operation eventually returns from the
invocation (robust … unlike locking)

Atomicity: every operation appears to
execute instantaneously (as if the object
was locked…)

38

In short

This course studies how to
wait-free implement high-level
atomic objects out of primitive base objects

39Shared object

Concurrent processes

40

Roadmap

Model
Processes and objects
Atomicity and wait-freedom

Examples
Content

41

Processes

§ We assume a finite set of processes

§ Processes are denoted by p1,..pN or p, q, r

§ Processes have unique identities and know
each other (unless explicitly stated
otherwise)

42

Processes

Processes are sequential units of
computations

Unless explicitly stated otherwise, we make
no assumption on process (relative) speeds

43

Processes

p1

p2

p3

44

Processes

A process either executes the algorithm
assigned to it or crashes
A process that crashes does not recover (in
the context of the considered computation)
A process that does not crash in a given
execution (computation or run) is called
correct (in that execution)

45

Processes

p1

p2

p3

crash

46

On objects and processes

Processes execute local computation or
access shared objects through their
operations

Every operation is expected to return a reply

47

Processes

p1

p2

p3

operation

operation

operation

48

On objects and processes
Sequentiality means here that, after
invoking an operation op1 on some object O1,
a process does not invoke a new operation (on
the same or on some other object) until it
receives the reply for op1

Remark. Sometimes we talk about operations
when we should be talking about operation
invocations

49

Processes

p1

p2

p3

operation

operation

operation

50

Atomicity

Every operation appears to execute at some
indivisible point in time (called linearization
point) between the invocation and reply time
events

51

Atomicity

p1

p2

p3

operation

operation

operation

52

Atomicity

p1

p2

p3

operation

operation

operation

53

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

crash

54

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

55

Atomicity (the crash case)

p1

p2

p3

operation

operation

p2

56

Wait-freedom

Any correct process that invokes an
operation eventually gets a reply, no matter
what happens to the other processes (very
slow or crash)

57

Wait-freedom

p1

p2

p3

operation

58

Wait-freedom

Wait-freedom conveys the robustness of
the implementation
With a wait-free implementation, a process
gets replies despite the crash of the n-1
other processes
Note that this precludes implementations
based on locks (mutual exclusion)

59

Wait-freedom

p1

p2

p3

crash

operation

crash

60

Roadmap

Model
Processes and objects
Atomicity and wait-freedom

Examples
Content

61

Most synchronization primitives (problems)
can be precisely expressed as atomic
objects (implementations)

Studying how to ensure robust
synchronization boils down to studying
wait-free atomic object implementations

Motivation

62

Example 1
The reader/writer synchronization problem
corresponds to the register object
Basically, the processes need to read or
write a shared data structure such that the
value read by a process at a time t, is the
last value written before t

63

Register
A register has two operations: read() and
write()

We assume that a register contains an integer
for presentation simplicity, i.e., the value stored
in the register is an integer, denoted by x
(initially 0)

64

Sequential specification
Sequential specification
read()

return(x)
write(v)

x <- v;
return(ok)

65

Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok

66

Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok

67

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok

68

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok

69

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 1

70

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0

71

Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0

72

Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0

73

Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0

74

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0

75

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 1

76

Example 2
The producer/consumer synchronization
problem corresponds to the queue object
Producer processes create items that need
to be used by consumer processes
An item cannot be consumed by two
processes and the first item produced is
the first consumed

77

Queue
A queue has two operations:
enqueue() and dequeue()

We assume that a queue internally
maintains a list x which exports
operation appends() to put an item at the
end of the list and remove() to remove
an element from the head of the list

78

Sequential specification
dequeue()

if(x=0) then return(nil);
else return(x.remove())

enqueue(v)
x.append(v);
return(ok)

79

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok

80

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok

81

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

enq(y) - ok

82

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - x

enq(y) - ok

83

Roadmap

Model
Processes and objects
Atomicity and wait-freedom

Examples
Content

84

Content
(1) Implementing registers
(2) The power & limitation of registers
(3) Universal objects & synchronization number
(4) Transactional memory
(5) The power of time & failure detection
(6) Tolerating failure prone objects
(7) Anonymous implementations
(8) Non-volatile memory
(9) Hybrid memory

85

In short

This course studies how to wait-free
implement high-level atomic objects
out of basic objects

Unless explicitly stated otherwise,
objects mean atomic objects and
implementations are wait-free

