The Limitations of Registers

R. Guerraoui

Distributed Programming Laboratory
Registers

• **Question 1**: what objects can we implement with registers? *Counters* and *snapshots* (previous lecture)

• **Question 2**: what objects we cannot implement? (this lecture)
Shared memory model

Registers

P1
P2
P3
Shared memory model

Counters

Registers

Snapshots

P1

P2

P3
Shared memory model

- P1
- P2
- P3

- Counters
- Snapshots
- Registers
- Queue?
- Fetch&Inc?
Fetch&Inc

- A counter that contains an integer

- Operation fetch&inc() increments the counter and returns the new value
The consensus object

- One operation `propose()` which returns a value. When a propose operation returns, we say that the process decides

- No two processes decide differently

- Every decided value is a proposed value
The consensus object

- **Proposition:**
 ✓ *Consensus* can be implemented among two processes with *Fetch&Inc* and *registers*

- **Proof (algorithm):** consider two processes p0 and p1 and two *registers* R0 and R1 and a *Fetch&Inc C.*
2-Consensus with Fetch&Inc

- Uses two registers R0 and R1, and a Fetch&Inc object C (with one fetch&inc() operation that returns its value)
- (NB. The value in C is initialized to 0)

- Process pi:
 - propose(vI)
 - Rl.write(vI)
 - val := C.fetch&inc()
 - if(val = 1) then
 return(vI)
 - else return(R{1-I}.read())
Impossibility [FLP85,LA87]

- *Proposition*: No asynchronous deterministic algorithm implements consensus among two processes using only registers

- *Corollary*: No algorithm implements Fetch&Inc among two processes using only registers
Queue

- The queue is an object container with two operations: \textit{enq()} and \textit{deq()}

- Can we implement a (atomic wait-free) \textit{queue}?
2-Consensus with queues

Uses two registers R0 and R1, and a queue Q
Q is initialized to \{winner, loser\}

Process pl:

```plaintext
propose(vl)
    Rl.write(vl)
    item := Q.dequeue()
    if item = winner return(vl)
    return(R{1-I}.read())
```
\(P_0 \quad W(0) \quad \text{Deq()} \rightarrow \text{winner} \quad \text{Return}(0) \\
\quad R_0 \quad Q \\

P_1 \quad W(1) \quad \text{Deq()} \rightarrow \text{loser} \quad \text{Return}(0) \\
\quad R_1 \quad Q \)
Correctness

Proof (algorithm):

- (wait-freedom) by the assumption of a wait-free register and a wait-free queue plus the fact that the algorithm does not contain any wait statement

- (validity) If p_I dequeues winner, it decides on its own proposed value. If p_I dequeues loser, then the other process p_J dequeued winner before. By the algorithm, p_J has previously written its input value in R_J. Thus, p_I decides on p_J's proposed value;

- (agreement) if the two processes decide, they decide on the value written in the same register.
More consensus implementations

- A **Test&Set** object maintains binary values x, init to 0, and y; it provides one operation: **test&set()**
 - Sequential spec:
 - `test&set() {y := x; x: = 1; return(y);}`

- A **Compare&Swap** object maintains a value x, init to \bot, and provides one operation: **compare&swap(v,w)**;
 - Sequential spec:
 - `c&s(old,new) {if x = old then x := new; return(x)}`
2-Consensus with Test&Set

- Uses two registers R0 and R1, and a Test&Set object T

- Process pl:

 - propose(vl)
 - R1.write(vl)
 - val := T.test&set()
 - if(val = 0) then
 - return(vl)
 - else return(R{1-l}.read())
N-Consensus with C&S

- Uses a C&S object C

- Process p_1:

 - propose(v_1)

 - $val := C.c&s(\bot,v_1)$

 - if($val = \bot$) then

 - return(v_1)

 - else return(val)
Impossibility [FLP85,LA87]

- **Proposition:** No asynchronous deterministic algorithm implements *consensus* among two processes using only *registers*

- **Corollary:** No algorithm implements a *queue* (*Fetch&Inc,...*) among two processes using only *registers*
Registers

- **Question 1:** what objects can we implement with registers? *Counters* and *snapshots* (previous lecture)

- **Question 2:** what objects we cannot implement? All objects that (together with *registers*) can implement *consensus* (this lecture)
Impossibility (Proof)

- **Proposition:** no algorithm implements *consensus* among two processes using only *registers*

- Proof (by contradiction): consider two processes p0 and p1 and any number of *registers*, R1..Rk..

 Assume that a consensus algorithm A for p0 and p1 exists.
Elements of the model

- A *configuration* is a global state of the distributed system

- A new configuration is obtained by executing a *step* on a previous configuration: the step is the unit of execution
Elements of the model

- The adversary decides which process executes the next step and the algorithm deterministically decides the next configuration based on the current one
What is distributed computing?
A game
A game between an adversary and a set of processes
The adversary decides which process goes next

The processes take steps
Elements of the model

- The adversary decides which process executes the next step and the algorithm deterministically decides the next configuration based on the current one
Elements of the model

- **Schedule**: a sequence of steps represented by process ids
- The schedule is chosen by the system
- An asynchronous system is one with no constraint on the schedules: any sequence of process ids is a schedule
Consensus

- The algorithm must ensure that *agreement* and *validity* are satisfied in every schedule

- Every process that executes an infinite number of steps eventually decides
Impossibility (elements)

- (1) a (initial) configuration C is a set of (initial) values of $p0$ and $p1$ together with the values of the registers: $R1..Rk,..$;

- (2) a step is an elementary action executed by some process pI: it consists in reading or writing a value in a register and changing pI’s state according to the algorithm A;

- (3) a schedule S is a sequence of steps; $S(C)$ denotes the configuration that results from applying S to C.
Impossibility (elements)

- Consider u to be 0 or 1; a configuration C is u-valent if, starting from C, no matter how the processes behave, no decision other than u is possible.

- We say that the configuration is univalent. Otherwise, the configuration is called bivalent.
P0(0) \[\xrightarrow{\text{RI}} \] W(X) \[\xrightarrow{\text{RJ}} \] R() -> Y \[\xrightarrow{\text{Return}} \] Return(0)

P1(0) \[\xrightarrow{\text{RK}} \] W(Z) \[\xrightarrow{\text{RL}} \] W(V) \[\xrightarrow{\text{Return}} \] Return(0)
\[
P0(1) \quad \frac{W(X)}{RI} \quad \frac{R() \rightarrow Y}{RJ} \quad \text{Return}(1/0)
\]

\[
P1(0) \quad \frac{W(Z)}{RK} \quad \frac{W(V)}{RL} \quad \text{Return}(1/0)
\]
Impossibility (structure)

- **Lemma 1:** there is at least one initial *bivalent* configuration

- **Lemma 2:** given any bivalent configuration C, there is an *arbitrarily long schedule* $S(C)$ that leads to another bivalent configuration
The conclusion

- Lemmas 1 and 2 imply that there is a configuration C and an *infinite* schedule S such that, for any prefix S' of S, $S'(C)$ is bivalent.

- In infinite schedule S, at least one process executes an infinite number of steps and does not decide

- A contradiction with the assumption that A implements consensus.
Lemma 1

The initial configuration $C(0,1)$ is bivalent

Proof: consider $C(0,0)$ and p_1 not taking any step: p_0 decides 0; p_0 cannot distinguish $C(0,0)$ from $C(0,1)$ and can hence decides 0 starting from $C(0,1)$; similarly, if we consider $C(1,1)$ and p_0 not taking any step, p_1 eventually decides 1; p_1 cannot distinguish $C(1,1)$ from $C(0,1)$ and can hence decides 1 starting from $C(0,1)$. Hence the bivalency.
Lemma 2

Given any bivalent configuration C, there is an arbitrarily long schedule S such that $S(C)$ is bivalent.

Proof (by contradiction): let S be the schedule with the maximal length such as $D = S(C)$ is bivalent; $p_0(D)$ and $p_1(D)$ are both univalent: one of them is 0-valent (say $p_0(D)$) and the other is 1-valent (say $p_1(D)$).
Lemma 2

- Proof (cont’d): To go from D to p0(D) (vs p1(D)) p0 (vs p1) accesses a register; the register must be the same in both cases; otherwise p1(p0(D)) is the same as p0(p1(D)): in contradiction with the very fact that p0(D) is 0-valent whereas p1(D) is 1-valent
Lemma 2

- Proof (cont’d): To go from D to \(p_0(D) \), \(p_0 \) cannot read R; otherwise R has the same state in D and in \(p_0(D) \); in this case, the registers and \(p_1 \) have the same state in \(p_1(p_0(D)) \) and \(p_1(D) \); if \(p_1 \) is the only one executing steps, then \(p_1 \) eventually decides 1 in both cases: a contradiction with the fact that \(p_0(D) \) is 0-valent; the same argument applies to show that \(p_1 \) cannot read R to go from D to \(p_1(D) \). Thus both \(p_0 \) and \(p_1 \) write in R to go from D to \(p_0(D) \) (resp., \(p_1(D) \)). But then \(p_0(p_1(D)) = p_0(D) \) (resp. \(p_1(p_0(D)) = p_1(D) \)) --- a contradiction.
The conclusion (bis)

Lemmas 1 and 2 imply that there is a configuration C and an *infinite* schedule S such that, for any prefix S' of S, S'(C) is bivalent.

In infinite schedule S, at least one process executes an infinite number of steps and does not decide.

A contradiction with the assumption that A implements consensus.