Problem 1. Let P be the problem of implementing C&S using base C&S objects, one of which can be non-responsive, and registers (non-faulty). Let Q be the problem of implementing consensus using registers in a system of $n > 1$ processes, one of which can crash (we know this problem to be impossible). We perform our proof by contradiction: assume there exists an algorithm A that solves P using k C&S objects, in a system of n processes (one of which can crash). If we find an algorithm B that solves problem Q, using A we have reached a contradiction.

From non-faulty C&S to consensus: We implement consensus in a system of $N = \max(k, n)$ processes, one of which can crash. A process p_i that proposes a value, writes the value in a register $R[i]$ and waits until a decided value is written in register D:

initially: $D = \perp, R[1, \ldots, N] = \perp$

upon $\text{propose}_i(v)$ do
 \begin{itemize}
 \item $R[i] \leftarrow v$
 \item wait until $D \neq \perp$
 \item return D
 \end{itemize}

Each of the n processes then runs the following task in parallel and uses the hypothetical correct C&S object implemented using algorithm A.

parallel task Cons_i
 \begin{itemize}
 \item wait until some value $v \neq \perp$ is written in some register $R[j]$
 \item use algorithm A to call $\text{CAS}(\perp, v)$ on the non-faulty C&S object
 \item $D \leftarrow$ value returned by the CAS
 \end{itemize}

From registers to non-responsive C&S: Each of n processes emulates one base C&S object. The processes share a 2-dimensional array CS of registers. When process i wants to invoke the CAS operation of C&S object x it invokes the following:

upon $\text{CAS}_x(oldval, newval)$, do
 \begin{itemize}
 \item $CS[x][i] \leftarrow (\text{invocation, oldval, newval})$
 \item wait until $CS[x][i] = (\text{response, retval})$
 \item return $retval$
 \end{itemize}

Since one of the processes can fail, its corresponding C&S object becomes non-responsive. Each process i reads invocations from locations $CS[i][\ast]$ and applies them:
parallel task C_i
initially: $q = \bot$ (local variable)
while true do
 for $j \leftarrow 1$ to n do
 $(\text{type}, \text{oldval}, \text{newval}) \leftarrow CS[i][j]$
 if type = invocation then
 if $q = \text{oldval}$ then $q \leftarrow \text{newval}$
 $CS[i][j] \leftarrow (\text{response}, q)$

Problem 2. We use $2t+1$ base registers, so that always majority is correct. Read/write from/to majority of registers.

uses: $R[1, \ldots, 2t+1]$ – SWMR registers t of which can be non-responsive

upon $\text{write}_i(v)$ do
 $ts \leftarrow ts + 1$
 invoke $\text{write}_i(ts, v)$ on all $R[1, \ldots, 2t+1]$
 wait for $t + 1$ responses

upon $\text{read}_i(v)$ do
 invoke $\text{read}_i(v)$ on all $R[1, \ldots, 2t+1]$
 wait for $t + 1$ responses
 return the value v with the highest timestamp ts

The presented algorithm implements a regular SWMR register. However, a regular register can be transformed into an atomic one (see the lecture slides about register transformations).