
Concurrent Algorithms November 14, 2016

Solutions to Exercise 6

Problem 1.
Let A be an obstruction-free algorithm implementing some shared object O with operations op1, . . . , opk.

The goal of the exercise is to transform algorithm A into a wait-free algorithm B that also implements shared
object O (i.e., the operations op1, . . . , opk). We will do it by implementing an abstraction called a contention
manager, using an eventually perfect failure detector 3P and atomic registers.

Wait-free implementation B of shared object O

Obstruction-free
algorithm A

Contention manager Failure detector 3P
try/resign suspected

A contention manager implements two operations: tryi and resigni (invoked by process pi). These op-
erations do not take any arguments and always return ok. A contention manager resolves contention, and
thus guarantees wait-freedom, by delaying some processes that have invoked tryi. In other words, when a
process pi invokes tryi, a contention manager can decide when to return from the operation—it can delay
the response of tryi for an arbitrarily long time.

We assume that algorithm A uses the interface of the contention manager, i.e., that it invokes tryi and
resigni. More precisely, every time an operation opm, implemented by A, is executed by a process pi, the
following conditions are satisfied:

1. tryi is called always before the first step of the implementation of opm is executed (i.e., just after opm is
invoked), and possibly many times while opm is being executed, (You may stop the implementation
of opm at some point, call tryi, and later resume opm at the same point.)

2. resigni is called only immediately after the last step of the implementation of opm is executed (i.e., just
before the result of opm is returned),

3. If process pi is correct but does not return from operation opm (i.e., the implementation of the operation
keeps executing), then pi keeps calling tryi many times. (The number of times should be finite as
the problem asks you for a wait-free algorithm. However, the number is unbounded as the failure
detector introduced below only guarantees some property after some unknown time.)

Moreover, every time process pi invokes tryi or resigni, pi waits until tryi/resigni returns before executing
any further steps of algorithm A.

An eventually perfect failure detector 3P maintains, at every process pi, a set suspectedi of suspected
processes. 3P guarantees that eventually, after some unknown time, the following conditions are satisfied:

1. Every correct process permanently suspects every crashed process,

2. No correct process is ever suspected by any correct process.

This means that suspectedi can be arbitrary and different at every process for any finite period of time. How-
ever, eventually, at every correct process pi, set suspectedi will be permanently equal to the set of processes
that have crashed.

Your task is to implement a contention manager C (i.e., the operations tryi and resigni, for every process
pi) that converts obstruction-free algorithm A into wait-free algorithm B, and that uses only atomic registers
and failure detector 3P .

p-1



Solution

The following algorithm implements a contention manager that transforms any obstruction-free algorithm
into a wait-free one:

uses: T[1, . . . , N]—array of registers
initially: T[1, . . . , N]← ⊥
upon tryi do

if T[i] = ⊥ then T[i]← GetTimestamp()

repeat
sacti ← { pj | T[j] 6= ⊥ ∧ pj /∈ 3P .suspectedi }
leaderi ← the process in sacti with the lowest timestamp T[leaderi]

until leaderi = pi
return ok

upon resigni do
T[i]← ⊥
return ok

The algorithm uses a procedure GetTimestamp() that generates unique timestamps. We assume that
if a process gets a timestamp t from GetTimestamp(), then no process can get a timestamp lower than t
infinitely many times. Such a procedure can be implemented as follows, using only registers.

uses: R[1, . . . , N]—array of registers
initially: R[1, . . . , N]← 0

upon GetTimeStampi do
tempi ← R[i] + 1
R[i]← tempi
sumi ← 0
for j = 1 to N do

sumi ← sumi + R[j]

return (i, sumi)

Then to find a lowest timestamp, we define an order between two pairs (i, t1) and (j, t2) as follows:
(i, t1) < (j, t2) if t1 < t2, or t1 = t2 and i < j.

We note that a process may invoke tryi many times until it finds the implementation of algorithm A for
operation opm terminates. This is due to the fact that the failure detector is only eventually perfect, which
can make mistakes in suspecting processes in some finite period of time. Thus after the first tryi returns
ok, pi may be in fact running opm concurrently with another process and takes an infinite number of steps
(since A is only obstruction-free). However, we can avoid this by looking into the implementation of A for
opm, stop opm from time to time, invoke tryi again and resume opm; we may repeat this until opm finishes.

p-2


