
Memory Reclamation

Concurrent Algorithms
Fall 2020

Igor Zablotchi

Introduction

• So far in the course, we have assumed that
memory is infinite
• This assumption needs not be true
• In practice, memory is finite
• Memory reclamation

• Topic of ongoing research

2

What is Memory Reclamation (MR)?

• Applications need memory
• Most realistic applications grow and shrink in

memory
• Grow = allocate memory
• Shrink = free no-longer-useful memory

3

What is Memory Reclamation (MR)?

4

ds = new_data_structure(…);
node n = new_node(…);
insert(ds, n);
// use n in some way
remove(ds,n);

Need to free n!

Freeing Memory is Necessary

• Otherwise, applications might run out of memory
or use too much memory

5

Automatic Garbage Collection

• Some languages (e.g., Java) have automatic
memory management
• Memory is allocated & freed without explicit

programmer intervention
• Garbage collector decides automatically when a

pointer should be freed

6

Explicit Memory Management

• Other languages (e.g., C, C++) require the
programmer to allocate & free memory explicitly
• Programmer needs to determine when to free

some memory location
• This is our focus for this class

7

1-process MR is Easy

• Allocate some memory
• Use it
• Free after last use

8

1-process MR is Easy

O1

Process P2

O2 O3 ……

Use O1
Remove O1

Free O1

9

Concurrent MR is Difficult

• No easy way for a process to determine if a
memory location will be used later by a different
process

10

Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Use O1
Remove O1

11

Concurrent MR is Difficult

About to
read O1

O1

Process P1 Process P2

O2 O3 ……

12

Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Free O1 ?About to
read O1

13

Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Free O1 !About to
read O1

14

Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Error!

15

Take-away So Far

• Memory reclamation = deciding when to free
memory
• Necessary:
• Most applications need to allocate + free
• C, C++ are here to stay
• No MR → excessive memory use

• Challenging (concurrent case):
• Need a way to determine when all processes are done

with some memory location

16

Outline

• Introduction
• Traditional MR Algorithms
• Lock-free Reference Counting
• Hazard Pointers
• Epoch-based Reclamation

• QSense: A Hybrid MR Algorithm
• Conclusion

17

Lock-free Reference Counting

• Main idea:
• For each memory location, keep track of how many

references are held to it.
• When there are 0 references, safe to reclaim.

18

LFRC Example

O1 O2 O3 ……

1 1 1Reference count

A linked list. No process has references. Each node
has reference count = 1 (the reference from the

previous node in the list).

19

LFRC Example

O1

Process P2

O2 O3 ……

2 1 1

A thread is reading. The node that the thread is
currently looking at has reference count = 2. 20

LFRC Example

O1

Process P2

O2 O3 ……

1 2 1

A thread is reading. The node that the thread is
currently looking at has reference count = 2. 21

LFRC Example

O1

Process P2

O2 O3 ……

1 1 2

A thread is reading. The node that the thread is
currently looking at has reference count = 2. 22

LFRC Example

O1 O2

O3

……

1 1

1

A thread has removed node O3 from the list. O3 now has
reference count = 1 (the reference from the thread). 23

Process P2

LFRC Example

O1 O2

O3

……

1 1

0

The thread has released its reference to O3. O3 now has
0 references. Its memory can be freed. 24

Pros and cons of LFRC

✓ Lock-free (wait-free version exists)
✓ Easy to understand & implement

✘ Need to update reference counter on every
access, even if read-only → bad performance

✘ Update of reference counter requires expensive
atomic instructions → extremely bad
performance!

25

Outline

• Introduction
• Traditional MR Algorithms
• Lock-free Reference Counting
• Hazard Pointers
• Epoch-based Reclamation

• QSense: A Hybrid MR Algorithm
• Conclusion

26

Hazard Pointers (HP)

• Main idea:
• Each process announces memory locations it plans to

access: hazard pointers
• Processes only free memory that is not protected by

hazard pointers

27

Hazard Pointers (HP)

28

O1

Process P1 Process P2

O2 O3 ……

Hazard Pointers (HP)

29

O1

Process P1 Process P2

O2 O3 ……

HP

Don’t free O1,
I’m about to

use it.

Hazard Pointers (HP)

30

HP

O1

Process P1 Process P2

O2 O3 ……
Don’t free O1,
I’m about to

use it. I’d better not
free O1, T1 is

using it.

HP – More Details

0. Reachability
• Reachable node = can be found by following pointers

from data structure root(s)

31

O1 O3

O2

Before inserting
→ O2 not yet reachable

O1 O3O2

In the data structure
⬄O2 reachable

O1 O3

O2

After deletion
→ O2 no longer reachable

HP – More Details

1. Announcing hazard pointers

32

Without hazard pointers With hazard pointers

1. Read a reference p
2. Do something with p
3. (Release reference to p)

1. Read a reference p
2. HP = p // protect p
3. Check if p is still

reachable. If yes,
continue, otherwise
restart operation.

4. Do something with p
5. (Release reference to p)

HP – More Details

2. Deleting elements

• Each process has a “limbo list” containing nodes
that have been deleted but not yet freed
• After process pi deletes a node n from the data

structure, it adds n to pi’s limbo list

33

HP – More Details

3. Reclaiming memory

• When the limbo list grows to a certain size R, pi
initiates a scan:
• For each node n in the limbo list:

• Look at HPs of all processes. Is any of them pointing to n?
• If not, free n’s memory
• (If yes, do nothing)

34

HP Guarantees

Constant time per node reclaimed
+

Bounded memory overhead

→ Great performance and reliability
(in theory)

35

The Re-ordering Problem

36

processor
main

memory

stable storage
(SSD, HDD etc)

cache

re-ordering
(problematic)

Modern architectures reorder instructions

The Re-ordering Problem

// read reference to n
Announce_HP(n);

Check(n);
// continue using n

37

Modern architectures reorder instructions

Memory Barriers

• Memory barriers prevent re-ordering

• But they are expensive (slow)

38

HPs Need Barriers

Modern architectures reorder instructions

// read reference to n
Announce_HP(n);
Memory_barrier();
Check(n);
// continue using n

39

Barriers – Bad for Performance

O1 O2 O3 ……

Memory
Barrier

Memory
Barrier

Memory
Barrier

→ HP good in theory, slow in practice

40

Pros and Cons of HP

✓ Limits memory use
✓ Lock-free

✘ Need to update HP on every access, even if
read-only → bad performance

✘ Need memory barriers → bad performance
✘ Complex to implement & use → prone to errors

41

Outline

• Introduction
• Traditional MR Algorithms
• Lock-free Reference Counting
• Hazard Pointers
• Epoch-based Reclamation

• QSense: A Hybrid MR Algorithm
• Conclusion

42

Epoch-based Reclamation (EBR)

• Main idea:
• Processes keep track of each other’s progress
• After deleting an object, when all processes have made

enough progress, memory can be freed

43

EBR, Step by Step

• Step 1: processes declare when they enter & exit
critical sections

44

// code
enter_critical_section();
// more code
exit_critical_section();
// even more code

Here, we may access
“dangerous” memory

(memory that can be freed)

Here, only safe memory
accesses are allowed

(memory that is never freed)

EBR, Step by Step

• Step 2: each process has an epoch (an integer,
initially 0). The epoch is incremented by 1 when
entering and exiting a critical section.

→ epoch is odd if inside critical section and even otherwise

45

// code
enter_critical_section();
// more code
exit_critical_section();
// even more code

epoch = 0

epoch = 1

epoch = 2

EBR, Step by Step

• Step 3: After deleting an element, add it to a per-
process limbo list, together with current epochs of
all processes

46

O1 1 3 4 2 5 7,
O3 3 4 8 2 7 7,

…

Limbo list

Node epoch vector
Node

EBR, Step by Step

• Step 4: Periodically scan limbo list

47

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

EBR, Step by Step

• Step 4: Periodically scan limbo list

48

O3 3 4 8 2 7 7,

Only care about odd entries
(processes inside crit. sec.)!
Processes outside crit. sec.

cannot access this node.

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

EBR, Step by Step

• Step 4: Periodically scan limbo list

49

O3 3 4 8 2 7 7,

5 4 8 4 9 8

OK to reclaim!

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

Current
Epoch vector

EBR, Step by Step

• Step 4: Periodically scan limbo list

50

O3 3 4 8 2 7 7,

3 4 8 4 9 9

Not OK to reclaim!

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

Current
Epoch vector

Pros and Cons of EBR

✓ Small overhead → very good performance
✓ Easy to use

✘ Blocking (not lock-free)
→ can invalidate lock- or wait-freedom of data structure
→ if some process is delayed inside a critical section,

memory cannot be reclaimed any more

51

Outline

• Introduction
• Traditional MR Algorithms
• Lock-free Reference Counting
• Hazard Pointers
• Epoch-based Reclamation

• QSense: A Hybrid MR Algorithm
• Conclusion

52

HP and QSBR – Complementary

Non-blocking Small Overhead

EBR ✘ ✓
HP ✓ ✘

53

A Hybrid Approach

Fast path
EBR

(common case)

Prolonged thread
delays Fallback path

Hazard
Pointers
(rare case)

Threads fast enough

Fast,
blocking

Slower,
non-blocking

Fast in the common case, resilient when necessary 54

A Hybrid Approach

• Keep track of both HPs and epochs
• When scanning:
• If on fast path, use EBR-style scan
• If on slow path, use HP-style scan

55

Ideally, we should only use memory barriers in the fallback path.

The Barrier Strikes Back

56

• Read a pointer to a node n (Load)
• Assign HP to n (Store)
• If fallback mode is active (Load),

then
• Execute a memory barrier

• Recheck n (Load)
• Use n (Loads and Stores)

• Remove n
• If on fallback path

• Scan hazard pointers
• If no HPs for n, then

• Free n
• Else […]

n

R is reading n D is deleting n

The Barrier Strikes Back

57

• Read a pointer to a node n (Load)
• Assign HP to n (Store)
• If fallback mode is active (Load),

then
• Execute a memory barrier

• Recheck n (Load)

n

R is reading n D is deleting n

Some process P activates fallback mode
here

• Remove n
• If on fallback path

• Scan hazard pointers
• If no HPs for n, then

• Free n

Here, we are on the fast path
(fallback mode off)

• Use n (Loads and Stores) Error!

The Barrier Strikes Back

58

☹ It seems that we cannot turn memory barriers on
and off.

🤔 But what if we could eliminate them altogether?

→ Cadence: HPs without Memory Barriers

Cadence – Main Insight

context switch = memory barrier
for process being switched out

59

Can we use this to replace memory barriers in the HP algorithm?

Cadence

Two main concepts:
rooster processes and deferred reclamation

60

Rooster Processes

…

61

Rooster Processes

Worker thread

Context switch ≈ Memory Barrier
→ HP writes become visible

62

time

Deferred Reclamation

Remove node n Safe to check for HPs for n

63

time

t0 t

We no longer need memory barriers when using HPs.

QSense: Hybrid MR

Fast path
EBR

(common case)

Prolonged thread
delays Fallback path

Hazard
Pointers
(rare case)

Threads fast enough

Fast,
blocking

Slower,
non-blocking

64

Cadence

Fast in the common case, resilient when necessary

QSense Performance – Common
Case

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30

Th
ro

ug
hp

ut
 (M

op
/s

)

#Threads

0
2
4
6
8
10
12
14
16
18
20

0 10 20 30
#Threads

None QSBR QSense HP

Linked list
[2K elements]

Skiplist
[32K elements]

[50% reads, 50% updates] 65

EBR

QSense Behavior with Delays

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Time (s)

EBR QSense HP

Skiplist
[32k elements]

[8 threads, 50% reads, 50% updates]

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (M

op
/s

)

Time (s)

Linked list
[2k elements]

66

Recap

• What is memory reclamation?
• Traditional MR Techniques: LFRC, HP, EBR
• Cadence: HPs without memory barriers
• QSense: a hybrid of Cadence and EBR
• Fast in the common case
• Robust when necessary

67

Further Reading

• T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Performance of memory
reclamation for lockless synchronization. Journal of Parallel and Distributed Computing,
67(12), 2007.

• J. D. Valois. Lock-free linked lists using compare-and-swap. PODC 1995.

• M.M. Michael, M.L. Scott. Correction of a memory management method for lock-free
data structures. Technical Report TR599, Computer Science Department, University of
Rochester. 1995.

• D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele, Jr. Lock-free reference counting.
PODC 2001.

• M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst., 15(6), 2004.

• O. Balmau, R. Guerraoui, M. Herlihy, and I. Zablotchi. Fast and Robust Memory
Reclamation for Concurrent Data Structures. SPAA 2016.

68

