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Introduction

• So far in the course, we have assumed that 
memory is infinite
• This assumption needs not be true
• In practice, memory is finite
• Memory reclamation

• Topic of ongoing research
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What is Memory Reclamation (MR)?

• Applications need memory
• Most realistic applications grow and shrink in 

memory
• Grow = allocate memory
• Shrink = free no-longer-useful memory
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What is Memory Reclamation (MR)?
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ds = new_data_structure(…);
node n = new_node(…);
insert(ds, n);
// use n in some way
remove(ds,n);

Need to free n!



Freeing Memory is Necessary

• Otherwise, applications might run out of memory 
or use too much memory
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Automatic Garbage Collection

• Some languages (e.g., Java) have automatic 
memory management
• Memory is allocated & freed without explicit 

programmer intervention
• Garbage collector decides automatically when a 

pointer should be freed
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Explicit Memory Management

• Other languages (e.g., C, C++) require the 
programmer to allocate & free memory explicitly
• Programmer needs to determine when to free 

some memory location
• This is our focus for this class
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1-process MR is Easy

• Allocate some memory
• Use it
• Free after last use
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1-process MR is Easy

O1

Process P2

O2 O3 ……

Use O1
Remove O1

Free O1
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Concurrent MR is Difficult

• No easy way for a process to determine if a 
memory location will be used later by a different 
process
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Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Use O1
Remove O1
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Concurrent MR is Difficult

About to 
read O1

O1

Process P1 Process P2

O2 O3 ……
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Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Free O1 ?About to 
read O1
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Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Free O1 !About to 
read O1
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Concurrent MR is Difficult

O1

Process P1 Process P2

O2 O3 ……

Error!

15



Take-away So Far

• Memory reclamation = deciding when to free 
memory
• Necessary:
• Most applications need to allocate + free
• C, C++ are here to stay
• No MR → excessive memory use

• Challenging (concurrent case):
• Need a way to determine when all processes are done 

with some memory location
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Outline

• Introduction
• Traditional MR Algorithms
• Lock-free Reference Counting
• Hazard Pointers
• Epoch-based Reclamation

• QSense: A Hybrid MR Algorithm
• Conclusion

17



Lock-free Reference Counting

• Main idea: 
• For each memory location, keep track of how many 

references are held to it.
• When there are 0 references, safe to reclaim.

18



LFRC Example

O1 O2 O3 ……

1 1 1Reference count

A linked list. No process has references. Each node 
has reference count = 1 (the reference from the 

previous node in the list).
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LFRC Example

O1

Process P2

O2 O3 ……

2 1 1

A thread is reading. The node that the thread is 
currently looking at has reference count = 2. 20



LFRC Example

O1

Process P2

O2 O3 ……

1 2 1

A thread is reading. The node that the thread is 
currently looking at has reference count = 2. 21



LFRC Example

O1

Process P2

O2 O3 ……

1 1 2

A thread is reading. The node that the thread is 
currently looking at has reference count = 2. 22



LFRC Example

O1 O2

O3

……

1 1

1

A thread has removed node O3 from the list. O3 now has 
reference count = 1 (the reference from the thread).  23

Process P2



LFRC Example

O1 O2

O3

……

1 1

0

The thread has released its reference to O3. O3 now has 
0 references. Its memory can be freed. 24



Pros and cons of LFRC

✓ Lock-free (wait-free version exists)
✓ Easy to understand & implement

✘ Need to update reference counter on every 
access, even if read-only → bad performance

✘ Update of reference counter requires expensive 
atomic instructions → extremely bad 
performance!
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Outline

• Introduction
• Traditional MR Algorithms
• Lock-free Reference Counting
• Hazard Pointers
• Epoch-based Reclamation

• QSense: A Hybrid MR Algorithm
• Conclusion
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Hazard Pointers (HP)

• Main idea: 
• Each process announces memory locations it plans to 

access: hazard pointers
• Processes only free memory that is not protected by 

hazard pointers
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Hazard Pointers (HP)
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O1

Process P1 Process P2

O2 O3 ……



Hazard Pointers (HP)
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O1

Process P1 Process P2

O2 O3 ……

HP

Don’t free O1,
I’m about to 

use it.



Hazard Pointers (HP)
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HP

O1

Process P1 Process P2

O2 O3 ……
Don’t free O1,
I’m about to 

use it. I’d better not 
free O1, T1 is 

using it.



HP – More Details

0.   Reachability
• Reachable node = can be found by following pointers 

from data structure root(s)
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O1 O3

O2

Before inserting 
→ O2 not yet reachable 

O1 O3O2

In the data structure 
⬄O2 reachable

O1 O3

O2

After deletion
→ O2 no longer reachable 



HP – More Details

1. Announcing hazard pointers

32

Without hazard pointers With hazard pointers

1. Read a reference p
2. Do something with p
3. (Release reference to p)

1. Read a reference p
2. HP = p // protect p
3. Check if p is still 

reachable. If yes, 
continue, otherwise 
restart operation.

4. Do something with p
5. (Release reference to p)



HP – More Details

2. Deleting elements

• Each process has a “limbo list” containing nodes 
that have been deleted but not yet freed
• After process pi deletes a node n from the data 

structure, it adds n to pi’s limbo list
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HP – More Details

3. Reclaiming memory

• When the limbo list grows to a certain size R, pi 
initiates a scan:
• For each node n in the limbo list:

• Look at HPs of all processes. Is any of them pointing to n?
• If not, free n’s memory
• (If yes, do nothing)
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HP Guarantees

Constant time per node reclaimed
+

Bounded memory overhead

→ Great performance and reliability
(in theory)
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The Re-ordering Problem

36

processor
main 

memory

stable storage
(SSD, HDD etc)

cache

re-ordering
(problematic)

Modern architectures reorder instructions



The Re-ordering Problem

// read reference to n
Announce_HP(n);

Check(n);
// continue using n
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Modern architectures reorder instructions



Memory Barriers

• Memory barriers prevent re-ordering

• But they are expensive (slow)
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HPs Need Barriers

Modern architectures reorder instructions

// read reference to n
Announce_HP(n);
Memory_barrier();
Check(n);
// continue using n
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Barriers – Bad for Performance

O1 O2 O3 ……

Memory
Barrier

Memory
Barrier

Memory
Barrier

→ HP good in theory, slow in practice
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Pros and Cons of HP

✓ Limits memory use
✓ Lock-free

✘ Need to update HP on every access, even if 
read-only → bad performance

✘ Need memory barriers → bad performance
✘ Complex to implement & use → prone to errors
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Outline

• Introduction
• Traditional MR Algorithms
• Lock-free Reference Counting
• Hazard Pointers
• Epoch-based Reclamation

• QSense: A Hybrid MR Algorithm
• Conclusion
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Epoch-based Reclamation (EBR)

• Main idea:
• Processes keep track of each other’s progress
• After deleting an object, when all processes have made 

enough progress, memory can be freed
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EBR, Step by Step

• Step 1: processes declare when they enter & exit 
critical sections
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// code
enter_critical_section();
// more code
exit_critical_section();
// even more code

Here, we may access 
“dangerous” memory 

(memory that can be freed)

Here, only safe memory 
accesses are allowed 

(memory that is never freed)



EBR, Step by Step

• Step 2: each process has an epoch (an integer, 
initially 0). The epoch is incremented by 1 when 
entering and exiting a critical section.

→ epoch is odd if inside critical section and even otherwise
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// code
enter_critical_section();
// more code
exit_critical_section();
// even more code

epoch = 0

epoch = 1

epoch = 2



EBR, Step by Step

• Step 3: After deleting an element, add it to a per-
process limbo list, together with current epochs of 
all processes 
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O1 1 3 4 2 5 7,
O3 3 4 8 2 7 7,

…

Limbo list

Node epoch vector
Node



EBR, Step by Step

• Step 4: Periodically scan limbo list
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Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node



EBR, Step by Step

• Step 4: Periodically scan limbo list

48

O3 3 4 8 2 7 7,

Only care about odd entries 
(processes inside crit. sec.)! 
Processes outside crit. sec. 

cannot access this node.

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node



EBR, Step by Step

• Step 4: Periodically scan limbo list
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O3 3 4 8 2 7 7,

5 4 8 4 9 8

OK to reclaim!

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

Current 
Epoch vector



EBR, Step by Step

• Step 4: Periodically scan limbo list
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O3 3 4 8 2 7 7,

3 4 8 4 9 9

Not OK to reclaim!

Scan:
• cur_vec = current epoch vector
• For each node n in the limbo list:

• node_vec = n’s epoch vector
• For each process i:

• if node_vec[i] is odd
• if node_vec[i] >= cur_vec[i]

• Continue to next node
• Free node

Current 
Epoch vector



Pros and Cons of EBR

✓ Small overhead → very good performance
✓ Easy to use

✘ Blocking (not lock-free) 
→ can invalidate lock- or wait-freedom of data structure
→ if some process is delayed inside a critical section, 

memory cannot be reclaimed any more
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Outline

• Introduction
• Traditional MR Algorithms
• Lock-free Reference Counting
• Hazard Pointers
• Epoch-based Reclamation

• QSense: A Hybrid MR Algorithm
• Conclusion
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HP and QSBR – Complementary

Non-blocking Small Overhead

EBR ✘ ✓
HP ✓ ✘
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A Hybrid Approach

Fast path
EBR

(common case)

Prolonged thread 
delays Fallback path

Hazard 
Pointers
(rare case)

Threads fast enough

Fast, 
blocking

Slower, 
non-blocking

Fast in the common case, resilient when necessary 54



A Hybrid Approach

• Keep track of both HPs and epochs
• When scanning:
• If on fast path, use EBR-style scan
• If on slow path, use HP-style scan
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Ideally, we should only use memory barriers in the fallback path.



The Barrier Strikes Back
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• Read a pointer to a node n (Load)
• Assign HP to n (Store)
• If fallback mode is active (Load), 

then
• Execute a memory barrier

• Recheck n (Load)
• Use n (Loads and Stores) 

• Remove n
• If on fallback path

• Scan hazard pointers
• If no HPs for n, then 

• Free n
• Else […]

n

R is reading n D is deleting n



The Barrier Strikes Back
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• Read a pointer to a node n (Load)
• Assign HP to n (Store)
• If fallback mode is active (Load), 

then
• Execute a memory barrier

• Recheck n (Load)

n

R is reading n D is deleting n

Some process P activates fallback mode
here

• Remove n
• If on fallback path

• Scan hazard pointers
• If no HPs for n, then 

• Free n

Here, we are on the fast path
(fallback mode off)

• Use n (Loads and Stores) Error!



The Barrier Strikes Back
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☹ It seems that we cannot turn memory barriers on 
and off.

🤔 But what if we could eliminate them altogether?

→ Cadence: HPs without Memory Barriers



Cadence – Main Insight

context switch = memory barrier
for process being switched out
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Can we use this to replace memory barriers in the HP algorithm? 



Cadence

Two main concepts: 
rooster processes and deferred reclamation
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Rooster Processes

…
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Rooster Processes

Worker thread

Context switch ≈ Memory Barrier
→ HP writes become visible
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time



Deferred Reclamation

Remove node n Safe to check for HPs for n
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time

t0 t

We no longer need memory barriers when using HPs.



QSense: Hybrid MR

Fast path
EBR

(common case)

Prolonged thread 
delays Fallback path

Hazard 
Pointers
(rare case)

Threads fast enough

Fast, 
blocking

Slower, 
non-blocking
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Cadence

Fast in the common case, resilient when necessary



QSense Performance – Common 
Case

0
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[50% reads, 50% updates] 65
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QSense Behavior with Delays
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Recap

• What is memory reclamation?
• Traditional MR Techniques: LFRC, HP, EBR
• Cadence: HPs without memory barriers
• QSense: a hybrid of Cadence and EBR
• Fast in the common case
• Robust when necessary
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