
Why lock-free synchronization?
A practitioner's perspective

Aleksandar Dragojević
Microsoft Research Cambridge

alekd@microsoft.com



Microsoft Research
Cambridge

https://careers.microsoft.com/



FaRM

A distributed computing platform
A shared distributed address space with transactions

Strong consistency
Strictly serializable transactions with opacity

High performance
Millions of operations per second

A lot of work on efficient concurrency
Crucial to achieve good performance of the whole system



Honeycomb

Hardware acceleration of high-level abstractions
Build distributed systems in custom hardware

Work in progress
Promising preliminary results

Again a lot of work on synchronization
A very interesting problem of synchronizing hardware and software



EPFL



Software transactional memory

Simple abstraction with good performance
Users only define transactions in their code, runtime executes them

Fine-grained synchronization in the runtime
A very hard problem as every cycle counts

Synchronization is at the core of the system



Synchronization is easy



Just use one lock for all synchronization

the_lock.acquire()

do anything()

the_lock.release()

void synchronized do_anything() {
// do the work

}



Fine-grained synchronization is hard

“Most code is mostly thread-safe”

“Using pointers read in a previous transaction is safe
because it has worked fine so far”



What is the goal?

Performance
And scalability – performance with the number of threads

Correctness is not the goal
It is a pre-requisite

For simple correctness, use one lock
It is much simpler



What does performance depend on?

Waiting or retrying
On locks or because validation fails

Cache misses
Accessing data in other core’s cache is expensive (an L3 cache miss takes ~100ns)
Writes are more expensive than reads

Atomic operations
Compare-and-swap, fetch-and-add, memory ordering fences, …
CPU pipeline flushes



What does this mean?

Short critical sections
Fine-grained locking or lock-free sections

As little shared data as possible
Thread-local data as much as possible

Few atomic operations
A few locks and compare-and-swap operations



Where does lock-free synchronization fit?

Not a clear performance winner
Can increase the number of cache misses due to indirection

Reads are often faster
Avoid writing needed to acquire locks

Writes are often slower
More complex and more expensive

Really good to guarantee time bounds
No unpredictable blocking on locks held by other threads



Today’s plan – examples from practice

Unique identifier generator
MPSC messaging queue
Scalable IO
Atomic RDMA reads



Computation model

Many threads each running on its core
Sometimes called processes

Memory to store data
Consists of 64-bit words

Atomic operations
Compare-and-swap, fetch-and-add, read, write

Sequentially consistent
No re-ordering of operations on one thread



Problem 1 : Unique Identifier Generator

Write a generate() function that returns a unique 64-bit identifier. The 
same identifier is not returned twice.



Sample execution
generate() → 0

generate() → 1

generate() → 2

generate() → 100

generate() → 99

generate() → 100



Can you propose a solution?



Use a counter.



Lock-based generator

Shared:
Lock the_lock
int64 next = 0

generate():
the_lock.acquire()
ret = next
next = ret + 1
the_lock.release()

return ret



Are these identifiers really unique?

What about wrap-around?
In a computer, 0 comes after the maximum for the specified bit width
With 8 bits: 254, 255, 0, 1,…

64-bit numbers are practically infinite
Even smaller numbers might be sufficient, depending on the context

It takes 194 years to overflow a 64-bit number
With 3 billion updates per second, which is really fast
60,000 thousand years if we update once every 100 nanoseconds



Lock-free generator

Shared:
int64 next = 0

generate():
return fetch_and_add(next, 1)



Which one is faster?

generate():
return fetch_and_add(next, 1)

generate():
the_lock.acquire()
ret = next
next = ret + 1
the_lock.release()

return ret

W

W

A

WA

R
WAR

Lock-free is faster
It maps to hardware very well



Is this fast enough?

Thread identifiers at the program start
Any approach will be fast enough

Dynamic thread identifiers
100s thousand per second – still fast enough

Operation identifiers
Millions per second
Might become a scalability bottleneck



Problem 1a: Scalable Identifier Generator

Write a generate() function that returns a unique 64-bit identifier. The 
same identifier is not returned twice. Generate() should scale to tens of 
millions of calls per second.



Can you propose a solution?



Batching

When performing the fetch-and-add, generate() acquires a large number 
of identifiers e.g. 100 for the calling thread.

Generate() returns one of the identifiers in the batch, unless the batch is 
exhausted. Then it acquires a new batch using fetch-and-add.

Reduces contention on the shared counter significantly e.g. by a factor of 
100.



Lock-free generator with batching

Shared:
int64 next = 0

Thread:
int64 batch_next = 0
int64 batch_last = 0

generate():
if batch_next == batch_last:

batch_next = fetch_and_add(next, 100)
batch_last = batch_next + 100

ret = batch_next
batch_next = batch_next + 1
return ret



Much better. Can we improve further?

Other than using a bigger batch.



Thread-local generate()

Assume we will not use more than 1024 threads and that we only need to 
generate a million identifiers per second per thread.
At start, acquire a thread identifier. This will be a 10-bit number.
Identifiers are formed from a next value of a thread-local counter as the 
top 54 bits and the thread identifier as the bottom 10 bits.
This requires very little synchronization.



Lock-free generator with batching

Shared:
int64 next_lsb = 0

Thread:
int64 lsb
int64 next_msb = 0

generate():
msb = next_msb
next_msb = next_msb + 1
return (msb << 10) | lsb

init():
lsb = fetch_and_add(next_lsb, 1)



Problem 1 : Summary

Different ways of generating identifiers
Depending on the requirements of the workload

Batching
A useful technique to amortize the cost of synchronization

Splitting the identifier space among threads
Almost no synchronization, but causes fragmentation



Food for thought 1

What changes if identifiers need to be consecutive? In some cases, this is 
desirable e.g. when generating transaction commit versions. Having 
consecutive identifiers helps with keeping track of completed transactions 
which is useful for garbage collection.



Food for thought 2

Limit the number of objects of type T created by threads in the system to 
1000.

Real problem: Reading objects from a database is expensive. To reduce 
the cost, we cache most recently read objects in machine’s main memory. 
We would like to keep the size of the cache limited to e.g. 1 GB to reduce 
the impact of caching.



Problem 2: MPSC messaging queue

Write a multi-producer, single-consumer queue to use for sending 
messages between threads.
The queue supports enqueue(m) operation that adds a new message to 
the queue. Enqueue() can be executed by any of the threads in the 
system.
The queue also supports dequeue_all() call which removes all the 
messages from the queue and returns them to the caller. Only a 
designated consumer thread can invoke this call. The messages are 
returned in the order in which they were enqueued to the queue.



Sample execution
enqueue(1)

enqueue(2)

dequeue_all() → (1, 2)

enqueue(3)

enqueue(4)

dequeue_all() → (4, 3)



Can you propose a solution?



Lock-based queue

struct msg {
int64 data
msg *next

}

Shared:
Lock the_lock
msg *head = null
msg *tail = null

dequeue_all():
the_lock.acquire()
ret = head
head = null
tail = null
the_lock.release()
return ret

enqueue(m):
m.next = null
the_lock.acquire()
if head == null:

head = m
tail = m

else:
tail.next = m
tail = m

the_lock.release()



Why not use a lock-free queue?

Well-known queues exist
See Michael-Scott queue for a classic example

Harder to implement
We needed to add uncommon dequeue_all()

Performance not very important
We expect tens of thousands of messages per second

We opted for the simple lock-based queue



Until…

We decided to decrease failure-detection times in our 
system to 10 ms



Failure detection

Machine 1

Machine 3

Machine 2Are you alive?

Yes, thank you for asking



Failure detection

Machine 1 Machine 2Are you alive?
Yes, thank you for asking

Dedicated core

High-priority thread

If the failure detection thread gets blocked, we have 
a false (positive) failure

We need a lock-free messaging queue to avoid blocking on the queue



Lock-free dequeue_all()
We would like to avoid a complex queue and modifying an existing 
MPMC queue would not be trivial.

We use a stack instead of the queue. A lock-free stack is easy to 
implement. Items are added and removed by a compare-and-swap on 
the head of the stack.

To dequeue_all(), the thread atomically sets the head of the stack to null. 
It then flips the list it dequeued to get the correct order. The list flipping is 
thread-local, so it is fast.



Lock-free dequeue_all()

struct msg {
int64 data
msg *next

}

Shared:
msg *head = null

dequeue_all():
while True:

h = head
if cas(head, h, null) == h:

return flip_list(h)

enqueue(m):
while True:

h = head
m.next = h
if cas(head, h, m) == h:

return



Lock-free dequeue_all() cont’d

flip_list(m):
prev = null
while m != null:
next = m.next
m.next = prev
prev = m
m = next

return prev



Problem 2: Summary

Lock-freedom shines when there are deadlines
Failure detection, real-time processing

It is challenging
The first instinct is always to use locks, as this is simpler

Thread-local processing is scalable
No sharing



Food for thought 3

Wait-free MPSC queue would be even better in this case, as it would 
guarantee that operations would finish in constant time.

Can you propose a wait-free MPSC queue?

That is not based on a universal construction.



Food for thought 4

Modify the Michael and Scott queue to support a dequeue_all operation.



Problem 3: Scalable IO

Propose a scalable scheme for sharing connections on a network card 
(NIC) between threads.

Each request needs to acquire a slot in a queue pair (QP) and a 
completion queue (CQ). When completed, the request will release the 
slots in the QP and CQ. If there are no available slots, the request cannot 
proceed.

Focus on the synchronization on the queues. Assume that the code for 
interfacing with the NIC is given.



Sample execution

2

3

QP

CQ

1

2

QPQP

CQ

QP



Can you propose a solution?



A challenging problem

Solution 1: global locking
Poor performance and scalability

Solution 2: mid-grained locking
Better performance, but still a bottleneck in the system

Solution 3: fine-grained locking
Further improvements



Locking scalable IO
What should we do with a request that cannot acquire resources? We use 
helping, as in lock-free algorithms. The request is queued at the QP or CQ 
and the thread that is issuing it can proceed to do other work. When a 
request completes, it helps queued requests make progress.

Lock a queue with the counter with fine-grained locks.

We opted for locks for simplicity. Lock-free synchronization becomes hard 
when multiple words need to be updated atomically.



Locking scalable IO
struct req {

resource *qp
resource *cq
req *next

}

struct resource {
int64 available
req *head = null
req *tail = null

}

Shared:
resource qps[]
resource cqs[]

enqueue(req, res):
if res.tail == null:

res.head = req
res.tail = req

else:
req.next = res.tail
res.tail = req

dequeue(res):
if res.head = null:

return null
ret = head
head = head.next
if head == null:

tail = null
return ret

is_empty(res):
return res.head == null



Locking scalable IO cont’d

perform_io(r):
if !reserve(r, r.qp)

return
if !reserve(r, r.cq)

return
do_perform_io(r)

reserve(r, q):
q.lock.acquire()
if q.available > 0:

q.available--
ret = True

else:
enqueue(r, q)
ret = False

q.lock.release()
return ret



Locking scalable IO cont’d
complete_io(r):

release_cq(r)
release_qp(r)

release_cq(r):
r.cq.lock.acquire()
if is_empty(r.cq):

h = null
r.cq.available++

else:
h = dequeue(r.cq)

r.cq.lock.release()
do_perform_io(h)

release_qp(r):
r.qp.lock.acquire()
if is_empty(r.qp):

h = null
r.qp.available++

else:
h = dequeue(r.cp)

r.qp.lock.release()
if !reserve(h, h.cq)

return
do_perform_io(h)



We are done. Or are we?
The NIC we are using guarantees in-order execution of requests on the same QP. 
Because different threads can help requests on the same QP, re-ordering can 
happen.

We allow requests to execute out-of-order, but complete them in order. These 
semantics were fine for our system. Each thread keeps a local queue of requests 
in the order in which they were issued. When the NIC reports request as done, it 
is completed only if it is at the head of the queue. Otherwise, it waits until it 
becomes gets to the head.



Problem 3: Summary

Fine-grained locking with helping
Using lessons learned from lock-free synchronization

Helped increase performance significantly 
25% improvement in system performance compared to prior scheme

Hard problem for lock-free synchronization
IO is typically not lock-free



Food for thought 5

Can you propose a lock-free solution to the scalable IO problem? 



Problem 4: Atomic RDMA reads

A machine can read objects from memory of remote machines by issuing 
remote read operations. The read is performed by the NIC on the remote 
machine.
NIC reading is not atomic with respect to updates on the CPU, because 
the object can consist of multiple consecutive words in memory . Propose 
a design that ensures read atomicity even in the presence of writes.



RDMA read
Machine A

RAM CPU NIC

Machine B

RAM CPU NIC

Different to local:
High latency
No cache coherence



How to do this on a single machine?

VW

Update

Acquire lock Update dataUnlock and increment

Lookup

Read version Read data

Consistent if version is unchanged and object is not locked



Can we just use this for remote reads?
Works very well on a local machine. With a successful read, the second 
header read hits in the CPU cache, so it is very fast. Also, latency to 
memory is short, so multiple reads are not a big overhead.
There is no cache coherence for data read over RDMA, so all reads are 
done over the network. Even consistent reads would do two network 
round-trips. Further, to order the first read of the header and data read 
after it, we need to issue two RDMA reads, bringing the total to three. 
This is very expensive.

We would like to perform a read with a single network round-trip.



Lock-free techniques are great here
Locking and unlocking would incur at least two network round-trips.

Here we didn’t even start with a locking scheme because of that.

Lock-free synchronization shines when synchronizing hardware and 
software because of high communication overheads.



Memory model is different
A read over the network will read a block of data. The size is specified in 
the request. For simplicity, let’s assume that each read is aligned to the 
cache line boundary and that it reads several cache lines. Cache line is 64 
bytes on the machines we are using. So the read can be 64, 128, 192,… 
bytes in size.
Hardware effectively executes reads of different cache lines in the block in 
parallel.
This means that the NIC sees updates inside one cache line in the order in 
which they were performed, but it can observe updates in different cache 
line out of order.



Can you propose a solution?



We add versions to each cache line

VW V V

Update

Acquire all locksUpdate data

W W

Increment version and unlock



Read the whole object and check versions

V V V

Consistent if all versions are equal and nothing is locked

Otherwise retry
Remove the versions before passing the object to the user



This works with one read. Great!

But space overheads are very high.
We use 8 bytes of every 64-byte cache line to store a version. This is 12.5% 
space overhead just for consistency.



Introduce more assumptions
We assume that clock drift between machines is bounded.

Clocks on different machines tick at slightly different intervals. We 
assume that the difference between their rate of ticking is bounded.

Note that we don’t assume that clocks themselves are synchronized. 
Having synchronized clocks can be useful, but we don’t use it here.

This allows us to store 1-byte versions in all cache lines except the header.



Using the bounded clock drift
We make sure that every object update takes at least 200 ns. Object 
updates usually take longer than that, but we wait if necessary to ensure 
this is true.

When reading, we measure how long it takes for the read to complete. If 
it takes longer than it would to perform 256 updates, we retry the read. 
RDMA reads usually take less than 50 micro-seconds, so the retries for 
this reason are rare.

We account for the clock drift when measuring the RDMA read time.



Problem 4: Summary

Lock-free techniques work well
Optimistically reading reduces the read count in the common case

Several techniques for a complete solution
This is often the case in a complete system



Food for thought 6

Propose an alternative scheme for remote atomic reads that requires a 
single round-trip on the fast path.



Food for thought 7

What if NIC guaranteed it read from the lowest to the highest address? 
Can you propose a different approach to guarantee atomic reads using 
the in-order guarantee?



Summary

Lock-free techniques are very useful
Even in algorithms that are not completely lock-free

They can be hard to develop
Coarse-grain locking is often a good starting point

Synchronization is at the core of most systems
High-performance distributed systems, software-hardware synchronization,…



Extra slides



Food for thought 1

We cannot use batching or local identifier generation if identifiers need to 
be consecutive. In this scenario, the lock-free generate() is a good choice.
The shared variable can become the point of contention. In a large multi-
socket machines, we could reduce the pressure on it by using hierarchical 
counters.



Food for thought 2

We can use a lock-free counter or a batched counter to solve this problem.
Partitioning items across threads upfront can also work, but unless the 
workload is very symmetric, it will fragment memory and result in a sub-
optimal cache size.
Other techniques can work. For instance, we could pre-assign the 
maximum number of objects to each thread, but allow threads to take 
some of the available capacity of another thread if needed.



Food for thought 3

A single-producer, single-consumer bounded queue can be implemented in a 
wait-free manner.
A system of wait-free queues can be used to implement MPSC queue with one 
SPSC queue between each producer and the consumer.

Note: this approach can result in message reordering. Importantly, the messages 
from the same sender are delivered in order, which is enough in many 
applications.
Note: bounded queues can cause issues if they are not large enough. If a thread 
waits for the queue to free up, they can cause blocking and cause issues similar 
to locking. We would typically ensure that the queue is big enough using 
knowledge of application semantics.



Food for thought 4

This is a great exercise, if you are interested in lock-free synchronization.

I don’t have a solution, as we solved the problem in a different way, but I 
would like to see yours if you do it.



Food for thought 5

This is a problem that is typically hard to do with lock-free 
synchronization

A possible approach is to use some of the spare bits in the pointer to store 
both the head of the queue and the capacity in the same word to allow to 
manipulate it atomically with compare-and-swap.



Food for thought 6

We can use object signatures. Signatures can be cryptographic or even 
non-cryptographic hashes. Object’s signature is stored with the object in 
the header. The read is performed with a single RDMA read. The client 
then calculates the signature of the data and compares it to the signature 
in the header. If the signatures match, the object is consistent. Otherwise, 
the read is restarted.
The main idea is that if a part of the object or the signature changes 
during the read, the signature stored with the object won’t match the 
calculated signature.



Food for thought 7

We can store a version in the header of the objects and also in the trailer. 
The read proceeds from the lowest to the highest address, so we need to 
update the two versions in the opposite direction – first the trailer and 
then the header.

Fun story: we first implemented this variant because of 
miscommunication with the hardware vendor and misunderstanding of 
the hardware behaviour. We found out later that the results were not 
consistent, but only through very focused testing.



Food for thought 7: update

VW

Increment version Update data

V

Lock the trailer

W

Increment version and unlock



Food for thought 7: read

V V

Consistent if the header and the trailer versions are equal
and object is not locked
Otherwise retry


