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Introduction

• So far: “traditional” concurrent objects
• Registers
• CAS
• etc.

• Studied for decades & understood well
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Introduction

• New technologies are constantly being developed
• They come with opportunities, but also with 
challenges 
• In this lecture, two new technologies

• RDMA
• Persistent Memory

• Both topics of ongoing research
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Part 1
RDMA
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Outline

• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults
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RDMA: Overview

• Networking hardware feature
• Direct access to remote memory

• No CPU at remote side
• No OS at either side

• Good performance 
• ~1us latency
• ~100Gbps bandwidth

• Configurable access permissions
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RDMA
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NIC NICCPU CPU

Remote Direct Memory Access (RDMA)

Remote DMA



RDMA: Permissions and Failures
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R1   R2   R3

NICCPU

p1

p2

p3p4

p5

p1: read R1&R2
p4: write R1
p5: RW R3
p3: none —

✘✘
Memory failure

Process failure

dynamic permissions: can be changed during execution

crash

Byzantine
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Modelling RDMA
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can fail
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Refresher: O-Consensus 

propose(v): 
while(true) 
Reg[i].T.write(ts); 
val := Reg[1,..,n].highestTspValue();
if val = ⊥ then val := v; 
Reg[i].V.write(val,ts); 
if ts = Reg[1,..,n].highestTsp() then 

return(val) 
ts := ts + n
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Paxos in Shared Memory

🤔What if memory can fail? 🤔

This assumes that shared memory never fails.

announce my timestamp adopt 
value with 
highest ts
(or mine if 

none)announce my value, ts

if my 
timestamp 

is the 
highest, 
decide



All-to-all
Connections

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear 
acknowledgement from majority

p1 p2 p3 p4 p5 p6

Acks:  n1234

Instead of many faulty 
memories, we can now think 
of one non-faulty memory!
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Handling Memory Failures



O-Consensus w Memory Failures
Disk Paxos [GafniLamport2002]

propose(v): 

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v; 
for every memory m in parallel:

Reg[m][i].V.write(val,ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then 

return(val) 
ts := ts + n

announce my 
timestamp
adopt value 
with highest 
ts (or mine if 

none)

announce 
my value, ts

if my 
timestamp 

is the 
highest, 
decide



propose(v): 

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v; 
for every memory m in parallel:

Reg[m][i].V.write(val,ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then 

return(val) 
ts := ts + n

O-Consensus w Memory Failures

Why read 
again here?

☝Need to 
check if I 
ran alone!



• If we don’t read again, we might miss a concurrent 
process’s timestamp
• This could lead to violation of agreement

• What if there was another way to determine if there 
was a concurrent process?
• We wouldn’t need the last read! 
→ better complexity
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O-Consensus w Memory Failures



Solo Detection w/ Permissions
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memory

p1
get 

permission
ok

write
ok ok

write

Idea: Memory gives write permission to the last process that requested it.
→ Only one process has write permission on a memory at any time.



Solo Detection w/ Permissions
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memory

p1
get 

permission
ok

write
ok NOT OK

write

p2

get 
permission

ok
write ok



Solo Detection w/ Permissions
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memory

p1
get 

permission
ok

write
ok

write

p2

get 
permission

ok
write ok

ok

I was running solo (no 
one else wrote)



propose(v): 

while(true)

ts := ts + n

for every memory m in parallel:
m.getPermission();
Reg[m][i].T.write(ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts < temp[1..m][1..n].highestTsp() then continue;
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v; 
for every memory m in parallel:

Reg[m][i].V.write(val,ts); 
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if writes succeeded at majority of memories then 

return(val) 

O-Consensus with 
Memory Failures and Permissions

No need to 
read again!



Quick Look: Replication Latency

233-4x faster than state-of the art

[3x replication, 100Gbps Infiniband]

3.06x

50 32 64 64 64 40 64 64
Payload [B]

4.08x
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Equivocation

👼

p2

p3

m

m

p2

p3

m

m’



Preventing Equivocations in 
Message Passing
• Requires n=3f+1, where n is the total number of 
processes and up to f processes can be Byzantine
• Intuition:
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A C

B

m m’

✘
👼 👼f

f

f

Adversary can 
prevent correct 
processes from 
communicating

☹



Preventing Equivocation in 
Shared Memory
• Only requires 𝑛 ≥ 𝑓 + 1
• Intuition:
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A C

B

👼 👼

f

Adversary cannot 
(completely) prevent 

correct processes from 
communicating

🙂m

m

m

m

“I saw m”

m’

m’

Something’s 
not right

shared memory



Non-equivocating Broadcast

• Liveness: If a correct process p broadcasts m, 
then all correct processes eventually deliver m from 
p. 
• Agreement: If p and q are correct processes, p
delivers m from r, and q delivers m′ from r, then 
m=m′ . 
• Validity: If a correct process delivers m from p, p
must have broadcast m.
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NEB Algorithm—Data

• The processes maintain an array of SWMR 
registers R[1..n] (process i is the writer of R[i])
• The registers are initialized to ⊥
• One of the processes (call it s) is the sender, all 
processes are receivers
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NEB Algorithm

• To broadcast m:
• R[s].write(m)

• To receive:
• while (true)

• senderMsg = R[s].read()
• if (senderMsg == ⊥) then continue
• R[i].write(senderMsg)
• for i=1..n

• recvMsg = R[i].read()
• if recvMsg != ⊥ &&  recvMsg != senderMsg then 

• return; // found conflicting values (Byzantine sender), don’t deliver 
• deliver(senderMsg)
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Side note: the sender 
cryptographically signs its 
message so that Byzantine 

processes cannot lie about what 
the sender said 



Recap —RDMA

• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults: reducing communication complexity
• Byzantine faults: “easy” non-equivocation
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Part 2
Persistent Memory
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Outline

• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM
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What is Persistent Memory?

35

processor memory

stable storage
(SSD, HDD etc)

cache



What is Persistent Memory?
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processor memory

stable storage
(SSD, HDD etc)

cache

Volatile
Persistent



What is Persistent Memory?
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processor
persistent
memory

stable storage
(SSD, HDD etc)

cache

NVRAM

Volatile
Persistent



What Is Persistent Memory?
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Access times ~ 
RAM

Byte 42

Byte 43

Byte-
addressability

Durability in the 
face of crashes & 

recoveries



Outline

• What is persistent memory?
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Modelling durability 

40

p1

p2

p3

arbitrarily slow/crashed

Process delays & crashes



Modelling durability 

41

p1

p2

p3

Full-system crash & recover

crash

✘
recovery

✘

✘

contents of shared memory are preserved
local memory is lost



Recall: Atomicity

• Every operation appears to execute at some 
indivisible point in time (called linearization point) 
between its invocation and response
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Recall: Atomicity
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p1

p2

p3



Atomicity & Persistent Memory

• How can we express atomicity in this model?
→ durable linearizability
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Modelling durability 
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p1

p2

p3

Durable Linearizability

crash

✘
recovery

✘

✘

When there is no crash: durable linearizability = atomicity as before



Modelling durability 
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p1

p2

p3

Durable Linearizability

crash

✘
recovery

✘

✘

When there is no crash: durable linearizability = atomicity as before

State after 
recovery reflects 
all operations that 
completed before 

the crash



Modelling durability 

47

p1

p2

p3

Durable Linearizability

crash

✘
recovery

✘

✘

Operations that were ongoing during the crash may be kept (reflected 
in post-recovery state) or lost (not reflected)



Durable Linearizability

• If:
1. an operation A depends on an operation B, and 
2. A is reflected in the post-recovery state, 

• Then B must also be reflected in the post-recovery 
state.
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Example
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p1

p2

p3

crash

✘
recovery

✘

✘

fetch&increment - 0

fetch&increment - 2

fetch&increment - (no response) fetch&increment - 3



Outline

• What is persistent memory?
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• Data Structures for PM
• A Lower Bound for PM
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Concurrent Data Structures
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Lists

Trees

Hash tables

Skip lists



Challenge #1: Caches are Volatile
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processor
persistent
memory

stable storage
(SSD, HDD etc)

cache

NVRAM

Volatile
Persistent



Challenge #2: Re-ordering
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processor
persistent
memory

stable storage
(SSD, HDD etc)

cache

NVRAM

Volatile
Persistent

re-ordering
(problematic)



Challenges Illustrated
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1: mark memory as allocated
2: initialize memory

3: change link of node 1
4: change link of node 2

5: done = 1

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1

crash

Upon restart: incorrect state



Flushes & Fences

• Instructions that address PM challenges
• Cache-line Flushes

• Asynchronously flush cache line contents to PM
• E.g., clflushopt, clwb on Intel x86

• Persistent Fences
• Stall until any pending flushes complete
• E.g., sfence, LOCK-prefixed instructions on x86

• Fences dominate cost of durability
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Challenges Illustrated
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Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1
crash

Upon restart: incorrect state

1: mark memory as allocated
2: persist allocation
3: initialize memory

4: persist memory content
5: change link of node 1

6: persist new link
7: change link of node 2
8: persist modified link

9: done = 1



Challenges Illustrated
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Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:
1: mark allocation
2: initialize mem
3: change link 1crash

Upon restart: incomplete operation

1: mark memory as allocated
2: persist allocation
3: initialize memory

4: persist memory content
5: change link of node 1

6: persist new link
7: change link of node 2
8: persist modified link

9: done = 1



Common Solution: Logging
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1: log[0] = starting transaction X
2: persist log[0]

3: log[1] = allocating a node at address A
4: persist log[1]

5: mark memory as allocated
6: persist allocation
7: initialize memory

8: persist memory content
9: log[2] = previous value of link

10: persist log[2]
11: change link 1

12: persist modified link
13: log[3] = previous value of link

14: persist log[3]
15: change link 2

16: persist modified link
17: done = 1

18: persist done
19: mark transaction X as finished

Frequent waiting for data to be persisted



The Problem with Logging

• Logging -> frequent waiting 
• slows down data structure performance

• Data structure performance is essential to overall 
system performance

60

The solution: reduce (or eliminate) logging



Recall: Durable Linearizability

• After a restart, the structure reflects:
• all operations completed (linearized) before the crash;
• (potentially) some operations that were ongoing when 

the crash occurred; 

61

persist

1. Persistently allocate and initialize node
2. Add link to new node

3. Persist link to new node

If crash between 
steps 2 and 3, 
violation of 
durable 

linearizability



Log-free Data Structures
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persist

1. Persistently allocate and initialize node
2. Add marked link to new node

3. Persist link to new node
4. Remove mark

Other threads - persist marked link if needed

Link-and-persist: atomic “modify” and “persist” link

*



Going Further: Batching
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FLUSH A
FLUSH B
FLUSH C

Batching flushes: 
beneficial for performance

time

cache line flushes

persistent fence



Going Further: Batching

• A link only needs to be persisted when an operation 
depends on it

• Store all un-persisted links in a fast concurrent cache
• When an operation directly depends on a link in the cache:

batch flushes of all links in the cache 
(and empty the cache)
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key 1 link addr1

key z link addr z

key y link addr y

Insert(X) X link addr X

Read(X)
…

write-back all links

link cache



Outline

• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM
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Persistent Fences

• Persistent fences prevent re-ordering
• But they are expensive (slow)
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Q: Can we avoid persistent fences?

A: No, they are unavoidable. 
But 1 fence per operation is sufficient.



You Can’t Eliminate Fences

• For any lock-free concurrent implementation of a 
persistent object
• there exists an execution E such that
• in E, every update operation performs at least 1 
persistent fence
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Lower Bound: Sequential Case
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p1

p2

p3

update

update

update



Lower Bound: Sequential Case
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p1 ✘

p2 ✘

p3 ✘

update

crash

update

update



Lower Bound: Sequential Case
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p1 ✘

p2 ✘

p3 ✘

update

update

update
crash

Need at least 1 persistent fence for every update.



Lower Bound: Concurrent Case
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p1 update

p2 update



Lower Bound: Concurrent Case
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p1 update

p2 update

I’ll just let p1 
perform the 

fence for 
both of us



Lower Bound: Concurrent Case
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p1 update

p2 update

😴 delayed before 
fence



Lower Bound: Concurrent Case
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p1 update

p2 update

😴 delayed before 
fence

Needs to 
perform its own 
fence



Lower Bound: Concurrent Case
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p1 update

p2 update

😴 delayed before 
fence

Needs to 
perform its own 
fence

Both processes perform one fence per update 
operation.



Recap —Persistent Memory

• What is persistent memory?
• How to define correctness for PM?
• Efficient Data Structures for PM
• A Lower Bound for PM – can’t always avoid fences
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