
New Technologies in
Concurrent Algorithms

Igor Zablotchi

Based on joint work with
Marcos Aguilera, Naama Ben-David, Nachshon Cohen, Tudor David, Aleksandar

Dragojevic, Rachid Guerraoui, Virendra Marathe, Athanasios Xygkis

[Some slides courtesy of Naama Ben-David and Tudor David]

1

Introduction

• So far: “traditional” concurrent objects
• Registers
• CAS
• etc.

• Studied for decades & understood well

2

Introduction

• New technologies are constantly being developed
• They come with opportunities, but also with
challenges
• In this lecture, two new technologies

• RDMA
• Persistent Memory

• Both topics of ongoing research

3

Part 1
RDMA

4

Outline

• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults

5

RDMA: Overview

• Networking hardware feature
• Direct access to remote memory

• No CPU at remote side
• No OS at either side

• Good performance
• ~1us latency
• ~100Gbps bandwidth

• Configurable access permissions

6

CPU CPU

RAM RAM

Server 1 Server 2

Direct
Access

RDMA

7

Memory Memory

NIC NICCPU CPU

Remote Direct Memory Access (RDMA)

Remote DMA

RDMA: Permissions and Failures

8

R1 R2 R3

NICCPU

p1

p2

p3p4

p5

p1: read R1&R2
p4: write R1
p5: RW R3
p3: none —

✘✘
Memory failure

Process failure

dynamic permissions: can be changed during execution

crash

Byzantine

Outline

• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults

9

Modelling RDMA

10

p1

p2

p3p4

p5

p1

p2

p3p4

p5

p1 p2 p3 p4 p5

minority of memories
can fail

Outline

• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults

12

Outline

• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults

13

Refresher: O-Consensus

propose(v):
while(true)
Reg[i].T.write(ts);
val := Reg[1,..,n].highestTspValue();
if val = ⊥ then val := v;
Reg[i].V.write(val,ts);
if ts = Reg[1,..,n].highestTsp() then

return(val)
ts := ts + n

14

Paxos in Shared Memory

🤔What if memory can fail? 🤔

This assumes that shared memory never fails.

announce my timestamp adopt
value with
highest ts
(or mine if

none)announce my value, ts

if my
timestamp

is the
highest,
decide

All-to-all
Connections

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear
acknowledgement from majority

p1 p2 p3 p4 p5 p6

Acks: n1234

Instead of many faulty
memories, we can now think
of one non-faulty memory!

15

Handling Memory Failures

O-Consensus w Memory Failures
Disk Paxos [GafniLamport2002]

propose(v):

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v;
for every memory m in parallel:

Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then

return(val)
ts := ts + n

announce my
timestamp
adopt value
with highest
ts (or mine if

none)

announce
my value, ts

if my
timestamp

is the
highest,
decide

propose(v):

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v;
for every memory m in parallel:

Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then

return(val)
ts := ts + n

O-Consensus w Memory Failures

Why read
again here?

☝Need to
check if I
ran alone!

• If we don’t read again, we might miss a concurrent
process’s timestamp
• This could lead to violation of agreement

• What if there was another way to determine if there
was a concurrent process?
• We wouldn’t need the last read!
→ better complexity

18

O-Consensus w Memory Failures

Solo Detection w/ Permissions

19

memory

p1
get

permission
ok

write
ok ok

write

Idea: Memory gives write permission to the last process that requested it.
→ Only one process has write permission on a memory at any time.

Solo Detection w/ Permissions

20

memory

p1
get

permission
ok

write
ok NOT OK

write

p2

get
permission

ok
write ok

Solo Detection w/ Permissions

21

memory

p1
get

permission
ok

write
ok

write

p2

get
permission

ok
write ok

ok

I was running solo (no
one else wrote)

propose(v):

while(true)

ts := ts + n

for every memory m in parallel:
m.getPermission();
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts < temp[1..m][1..n].highestTsp() then continue;
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v;
for every memory m in parallel:

Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if writes succeeded at majority of memories then

return(val)

O-Consensus with
Memory Failures and Permissions

No need to
read again!

Quick Look: Replication Latency

233-4x faster than state-of the art

[3x replication, 100Gbps Infiniband]

3.06x

50 32 64 64 64 40 64 64
Payload [B]

4.08x

Outline

• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults
• Byzantine faults

24

Equivocation

👼

p2

p3

m

m

p2

p3

m

m’

Preventing Equivocations in
Message Passing
• Requires n=3f+1, where n is the total number of
processes and up to f processes can be Byzantine
• Intuition:

27

A C

B

m m’

✘
👼 👼f

f

f

Adversary can
prevent correct
processes from
communicating

☹

Preventing Equivocation in
Shared Memory
• Only requires 𝑛 ≥ 𝑓 + 1
• Intuition:

28

A C

B

👼 👼

f

Adversary cannot
(completely) prevent

correct processes from
communicating

🙂m

m

m

m

“I saw m”

m’

m’

Something’s
not right

shared memory

Non-equivocating Broadcast

• Liveness: If a correct process p broadcasts m,
then all correct processes eventually deliver m from
p.
• Agreement: If p and q are correct processes, p
delivers m from r, and q delivers m′ from r, then
m=m′ .
• Validity: If a correct process delivers m from p, p
must have broadcast m.

29

NEB Algorithm—Data

• The processes maintain an array of SWMR
registers R[1..n] (process i is the writer of R[i])
• The registers are initialized to ⊥
• One of the processes (call it s) is the sender, all
processes are receivers

30

NEB Algorithm

• To broadcast m:
• R[s].write(m)

• To receive:
• while (true)

• senderMsg = R[s].read()
• if (senderMsg == ⊥) then continue
• R[i].write(senderMsg)
• for i=1..n

• recvMsg = R[i].read()
• if recvMsg != ⊥ && recvMsg != senderMsg then

• return; // found conflicting values (Byzantine sender), don’t deliver
• deliver(senderMsg)

31

Side note: the sender
cryptographically signs its
message so that Byzantine

processes cannot lie about what
the sender said

Recap —RDMA

• What is RDMA?
• How we model RDMA
• Notable Results: consensus with RDMA

• Crash faults: reducing communication complexity
• Byzantine faults: “easy” non-equivocation

32

Part 2
Persistent Memory

33

Outline

• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM

34

What is Persistent Memory?

35

processor memory

stable storage
(SSD, HDD etc)

cache

What is Persistent Memory?

36

processor memory

stable storage
(SSD, HDD etc)

cache

Volatile
Persistent

What is Persistent Memory?

37

processor
persistent
memory

stable storage
(SSD, HDD etc)

cache

NVRAM

Volatile
Persistent

What Is Persistent Memory?

38

Access times ~
RAM

Byte 42

Byte 43

Byte-
addressability

Durability in the
face of crashes &

recoveries

Outline

• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM

39

Modelling durability

40

p1

p2

p3

arbitrarily slow/crashed

Process delays & crashes

Modelling durability

41

p1

p2

p3

Full-system crash & recover

crash

✘
recovery

✘

✘

contents of shared memory are preserved
local memory is lost

Recall: Atomicity

• Every operation appears to execute at some
indivisible point in time (called linearization point)
between its invocation and response

42

Recall: Atomicity

43

p1

p2

p3

Atomicity & Persistent Memory

• How can we express atomicity in this model?
→ durable linearizability

44

Modelling durability

45

p1

p2

p3

Durable Linearizability

crash

✘
recovery

✘

✘

When there is no crash: durable linearizability = atomicity as before

Modelling durability

46

p1

p2

p3

Durable Linearizability

crash

✘
recovery

✘

✘

When there is no crash: durable linearizability = atomicity as before

State after
recovery reflects
all operations that
completed before

the crash

Modelling durability

47

p1

p2

p3

Durable Linearizability

crash

✘
recovery

✘

✘

Operations that were ongoing during the crash may be kept (reflected
in post-recovery state) or lost (not reflected)

Durable Linearizability

• If:
1. an operation A depends on an operation B, and
2. A is reflected in the post-recovery state,

• Then B must also be reflected in the post-recovery
state.

48

Example

49

p1

p2

p3

crash

✘
recovery

✘

✘

fetch&increment - 0

fetch&increment - 2

fetch&increment - (no response) fetch&increment - 3

Outline

• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM

50

Concurrent Data Structures

51

Lists

Trees

Hash tables

Skip lists

Challenge #1: Caches are Volatile

53

processor
persistent
memory

stable storage
(SSD, HDD etc)

cache

NVRAM

Volatile
Persistent

Challenge #2: Re-ordering

54

processor
persistent
memory

stable storage
(SSD, HDD etc)

cache

NVRAM

Volatile
Persistent

re-ordering
(problematic)

Challenges Illustrated

55

1: mark memory as allocated
2: initialize memory

3: change link of node 1
4: change link of node 2

5: done = 1

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1

crash

Upon restart: incorrect state

Flushes & Fences

• Instructions that address PM challenges
• Cache-line Flushes

• Asynchronously flush cache line contents to PM
• E.g., clflushopt, clwb on Intel x86

• Persistent Fences
• Stall until any pending flushes complete
• E.g., sfence, LOCK-prefixed instructions on x86

• Fences dominate cost of durability

56

Challenges Illustrated

57

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:

3: change link 1

5: done = 1
crash

Upon restart: incorrect state

1: mark memory as allocated
2: persist allocation
3: initialize memory

4: persist memory content
5: change link of node 1

6: persist new link
7: change link of node 2
8: persist modified link

9: done = 1

Challenges Illustrated

58

Write-back cache:
1: mark allocation
2: initialize mem
3: change link 1
4: change link 2
5: done = 1

NV memory:
1: mark allocation
2: initialize mem
3: change link 1crash

Upon restart: incomplete operation

1: mark memory as allocated
2: persist allocation
3: initialize memory

4: persist memory content
5: change link of node 1

6: persist new link
7: change link of node 2
8: persist modified link

9: done = 1

Common Solution: Logging

59

1: log[0] = starting transaction X
2: persist log[0]

3: log[1] = allocating a node at address A
4: persist log[1]

5: mark memory as allocated
6: persist allocation
7: initialize memory

8: persist memory content
9: log[2] = previous value of link

10: persist log[2]
11: change link 1

12: persist modified link
13: log[3] = previous value of link

14: persist log[3]
15: change link 2

16: persist modified link
17: done = 1

18: persist done
19: mark transaction X as finished

Frequent waiting for data to be persisted

The Problem with Logging

• Logging -> frequent waiting
• slows down data structure performance

• Data structure performance is essential to overall
system performance

60

The solution: reduce (or eliminate) logging

Recall: Durable Linearizability

• After a restart, the structure reflects:
• all operations completed (linearized) before the crash;
• (potentially) some operations that were ongoing when

the crash occurred;

61

persist

1. Persistently allocate and initialize node
2. Add link to new node

3. Persist link to new node

If crash between
steps 2 and 3,
violation of
durable

linearizability

Log-free Data Structures

63

persist

1. Persistently allocate and initialize node
2. Add marked link to new node

3. Persist link to new node
4. Remove mark

Other threads - persist marked link if needed

Link-and-persist: atomic “modify” and “persist” link

*

Going Further: Batching

64

FLUSH A
FLUSH B
FLUSH C

Batching flushes:
beneficial for performance

time

cache line flushes

persistent fence

Going Further: Batching

• A link only needs to be persisted when an operation
depends on it

• Store all un-persisted links in a fast concurrent cache
• When an operation directly depends on a link in the cache:

batch flushes of all links in the cache
(and empty the cache)

65

key 1 link addr1

key z link addr z

key y link addr y

Insert(X) X link addr X

Read(X)
…

write-back all links

link cache

Outline

• What is persistent memory?
• How to define correctness for PM?
• Data Structures for PM
• A Lower Bound for PM

66

Persistent Fences

• Persistent fences prevent re-ordering
• But they are expensive (slow)

67

Q: Can we avoid persistent fences?

A: No, they are unavoidable.
But 1 fence per operation is sufficient.

You Can’t Eliminate Fences

• For any lock-free concurrent implementation of a
persistent object
• there exists an execution E such that
• in E, every update operation performs at least 1
persistent fence

68

Lower Bound: Sequential Case

69

p1

p2

p3

update

update

update

Lower Bound: Sequential Case

70

p1 ✘

p2 ✘

p3 ✘

update

crash

update

update

Lower Bound: Sequential Case

71

p1 ✘

p2 ✘

p3 ✘

update

update

update
crash

Need at least 1 persistent fence for every update.

Lower Bound: Concurrent Case

72

p1 update

p2 update

Lower Bound: Concurrent Case

73

p1 update

p2 update

I’ll just let p1
perform the

fence for
both of us

Lower Bound: Concurrent Case

74

p1 update

p2 update

😴 delayed before
fence

Lower Bound: Concurrent Case

75

p1 update

p2 update

😴 delayed before
fence

Needs to
perform its own
fence

Lower Bound: Concurrent Case

76

p1 update

p2 update

😴 delayed before
fence

Needs to
perform its own
fence

Both processes perform one fence per update
operation.

Recap —Persistent Memory

• What is persistent memory?
• How to define correctness for PM?
• Efficient Data Structures for PM
• A Lower Bound for PM – can’t always avoid fences

77

Papers Referenced

1. Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra
Marathe, Igor Zablotchi. The Impact of RDMA on Agreement. PODC
2019.

2. Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra
Marathe, Athanasios Xygkis, Igor Zablotchi. Microsecond Consensus
for Microsecond Applications. OSDI 2020.

3. Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, Igor Zablotchi.
Log-Free Concurrent Data Structures. In USENIX ATC 2018.

4. Nachshon Cohen, Rachid Guerraoui, Igor Zablotchi. The Inherent Cost
of Remembering Consistently. SPAA 2019.

78

