New Technologies in
Concurrent Algorithms

lgor Zablotchi

Based on joint work with
Marcos Aguilera, Naama Ben-David, Nachshon Cohen, Tudor David, Aleksandar
Dragojevic, Rachid Guerraoui, Virendra Marathe, Athanasios Xygkis

[Some slides courtesy of Naama Ben-David and Tudor David]

Microsoft A ORACLE

Research 2 Labs

Introduction

III

» So far: "traditional” concurrent objects

* Registers
 CAS
e etc.

e Studied for decades & understood well

Introduction

* New technologies are constantly being developed

* They come with opportunities, but also with
challenges

* |n this lecture, two new technologies

- RDMA
* Persistent Memory

* Both topics of ongoing research

Part 1

Outline

* What is RDMA?

e How we model RDMA

 Notable Results: consensus with RDMA

* Crash faults
* Byzantine faults

RDMA: Overview

Networking hardware feature

Direct access to remote memory
* No CPU at remote side
* No OS at either side

Good performance

« ~Tus latency
« ~100Gbps bandwidth

Configurable access permissions

Server1

Direct
Access

Server 2

RDMA

Remote Direct Memory Access (RDMA)

e o ———

—— -

Remote DMA

RDMA: Permissions and Failures

h crash
T — t Byzantine

Process failure

Merﬁory failure

. read R.&R,
;. write R,
. RW R

[—

dynamic permissions: can be changed during execution

Outline

 What is RDMA?
e How we model RDMA

 Notable Results: consensus with RDMA

* Crash faults
* Byzantine faults

Modelling RDMA

can fail

minority of memories

10

P2 Ps Pa Ps

P1

Outline

 What is RDMA?
e How we model RDMA

 Notable Results: consensus with RDMA

* Crash faults
* Byzantine faults

12

Outline

 What is RDMA?
* How we model RDMA
 Notable Results: consensus with RDMA

* Crash faults

* Byzantine faults

Refresher: O-Consensus

Paxos in Shared Memory

propose(V):

while(true)
Reg[i] .T.wr‘ite(ts); > announce my timestamp
val := Reg[1,..,n].highestTspValue();
if val = 1 then val := v;
Reg[i].V.write(val,ts);
if ts = Reg[l,..,n].highestTsp() then

> ifmy

r‘etur‘n(val) Jtimestamp
. is the
ts := ts + n highest,
decide

This assumes that shared memory never fails.

2 What if memory can fail? ¢

Handling Memory Failures

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear
acknowledgement from majority

! | | ! / ! Instead of many faulty

\ _all ' memories, we can now think
- 0/(®
D1 2 p3
15

ctions ¢ of one non-faulty memory! |

P4 PS5 Peé

O-Consensus w Memory Failures

Disk Paxos [GafniLamport2002]

propose(Vv):
while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1l..n].read();
until completed for majority of memories
val := temp[l..m][1l..n].highestTspValue();
if val = L then val := v;
for every memory m in parallel:
Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1l..n].read();
until completed for majority of memories
if ts = temp[l..m][1l..n].highestTsp() then
return(val)
ts := ts + n

Ve

announce my
timestamp

if my
timestamp
is the
highest,
decide

O-Consensus w Memory Failures

propose(Vv):
while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1l..n].read();
until completed for majority of memories
val := temp[l..m][1l..n].highestTspValue();
if val = L then val := v;

Why read
again here?

for every memory m in parallel:
Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1l..n].read();

until completed for majority of memories

if ts = temp[l..m][1l..n].highestTsp() then
return(val)

ts := ts + n

« Needto
check if |
ran alone!

O-Consensus w Memory Failures

* [f we don't read again, we might miss a concurrent
process’s timestamp

 This could lead to violation of agreement

* What if there was another way to determine if there
was a concurrent process?

 We wouldn't need the last read!
—> better complexity

Solo Detection w/ Permissions

|dea: Memory gives write permission to the last process that requested it.
—> Only one process has write permission on a memory at any time.

get ok ok
permission write write

memory

Solo Detection w/ Permissions

P1
get ok ok
permission\ / writx / write\ / NOTOK
m

emory

Solo Detection w/ Permissions

4 N

| was running solo (no
one else wrote)

= o

get ok ok
permission write write

memory

gst ok
>

P2

O-Consensus with

propose(Vv):
while(true)
ts = ts + n

for every memory m in parallel:
m.getPermission();
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1l..n].read();

until completed for majority of memories

if ts < temp[l..m][1..n].highestTsp() then continue;

val := temp[l..m][1..n].highestTspValue();

if val = 1 then val := v;

for every memory m in parallel:
Reg[m][i].V.write(val,ts);

until completed for majority of memories

if writes succeeded at majority of memories then
return(val)

Memory Failures and Permissions

No need to
read again!

Quick Look: Replication Latency

[3x replication, 100Gbps Infiniband]

B Mu + HERD =8 Mu + LiQ IO Mu + mcd Mu + rds

XX DARE [fH Hermes B Apus + mcd B Apus + rds
10
of &
- 8 T © ©
3. & B¢
et 6 Lo
5 :
g 4 r
e
2
0 32 64 64 ©64 40 o604 ©64

Payload [B]

3-4x faster than state-of the art

23

Outline

 What is RDMA?
e How we model RDMA

 Notable Results: consensus with RDMA
* Crash faults

* Byzantine faults

Equivocation

Preventing Equivocations in
Message Passing

* Requires n=3f+1, where n is the total number of
processes and up to f processes can be Byzantine

* |Intuition:

Adversary can

- prevent correct
O’ processes from
communicating

Preventing Equivocation in
Shared Memory

* Onlyrequiresn = f + 1
* Intuition:

" saw m"

X, wr K

shared memory m’ m

Something’s
not right

Non-equivocating Broadcast

 Liveness: If a correct process p broadcasts m,
then all correct processes eventually deliver m from

p.

 Agreement: If p and g are correct processes, p
delivers m from r, and g delivers m’ from r, then
m=m’.

» Validity: If a correct process delivers m from p, p
must have broadcast m.

NEB Algorithm—Data

* The processes maintain an array of SWMR
registers R[1..n] (process i is the writer of R[i])

* The registers are initialized to L

* One of the processes (call it s) is the sender, all
Processes are receivers

NEB Algorithm

. Side note: the sender
* To broadcast m: cryptographically signs its
e R[s].write(m) message so that Byzantine

processes cannot lie about what
the sender said

 Toreceive:

* while (true)
* senderMsg = R[s].read()

 if (senderMsg == 1) then continue
* RIi].write(senderMsg)
e fori=1..n

* recvMsg = R[i].read()
* ifrecvMsg != L && recvMsg = senderMsg then
 return; // found conflicting values (Byzantine sender), don't deliver
* deliver(senderMsg)

Recap — RDMA

 What is RDMA?
 How we model RDMA

 Notable Results: consensus with RDMA

» Crash faults: reducing communication complexity
* Byzantine faults: “easy” non-equivocation

Part 2
Persistent Memory

Outline

* What is persistent memory?

 How to define correctness for PM?
e Data Structures for PM
A Lower Bound for PM

34

What is Persistent Memory?

stable storage
(SSD, HDD etc)

processor memory
cache
r 3 alnlinlnln l
ook - . 0nonon
IR - RAM
poopgf ' V Uuoooo
L J ijguudl

—

What is Persistent Memory? _ _ _

/ L
/
e m mm mm wm wm == TR R e - - [stable storage
~ | (SSD, HDD etc)
N

\ |

processor memory |

cache |

r i, ||||| \ l
O0D0 nnann ‘
ooo - RAM |
OO0 D0 guuuu ,

v 5 lllll |

o \ —

_________ —— \

Volatile A B
Persistent

What is Persistent Memory?

_—-
- =

_
-
S table st
R — stable storage
L — s
~ N y2 (SSD, HDD etc)
\ /
persistent
processor memory
cache \
r 3 l alalnln l
000 nnnnn
ooo RN NVRAM
000 guuuu
A e -
y -

\~

Volatile e
Persistent

What Is Persistent Memory?

J
G5)
Durability in the Access times ~
face of crashes & Byte- RAM

recoveries

addressability

Outline

* What is persistent memory?

* How to define correctness for PM?
» Data Structures for PM

* A Lower Bound for PM

39

Modelling durability

Process delays & crashes

arbitrarily slow/crashed /

Modelling durability

Full-system crash & recover

crash recovery

contents of shared memory are preserved
local memory is lost

Recall: Atomicity

» Every operation appears to execute at some
iIndivisible point in time (called linearization point)
between its invocation and response

Recall: Atomicity

43

Atomicity & Persistent Memory

* How can we express atomicity in this model?
—> durable linearizability

Modelling durability

Durable Linearizability

crash recovery

P3 O R ZQ

When there is no crash: durable linearizability = atomicity as before

Modelling durability

Durable Linearizability

crash recovery

P4 ® X % \
State after

_, recovery reflects
X **************** }2 all operations that

completed before
/ the crash

When there is no crash: durable linearizability = atomicity as before

P3 O R ZQ

Modelling durability

Durable Linearizability

crash recovery

P3 X N0 ZQ

Operations that were ongoing duringxg crash may be (reflected
in post-recovery state) or lost (not reflected)

Durable Linearizability

o |f:
1. an operation A depends on an operation B, and
2. Aisreflected in the post-recovery state,

* Then B must also be reflected in the post-recovery
state.

Example

fetch&increment - 0

fetch&increment - (no response)

Py

crash recovery

x 7

x £

fetch&increment - 2

x 7

fetch&increment - 3

49

Outline

* What is persistent memory?

* How to define correctness for PM?
» Data Structures for PM

* A Lower Bound for PM

50

Concurrent Data Structures

Lists
Linux
;'

Trees -y

Hash tables o My
‘ LEVELDB
monetdb) v -
Skip lists

. mongoDB

Challenge #1: Caches are Volatile

——-
- =

-
- -
I - stable storage
an mm W y
S N y - (SSD, HDD etc)
\ /
\ I persistent
processor memory
cache \ |
rnnn‘ ‘ | alalnlnln
ANNNN
ooo RN NVRAM
oo = (R
G J ’ \
/ \
/s
N o - o e = — - \ \
o S~ —_y —
Volatile e — -

Challenge #2: Re-ordering

——-
- =

-
-
1 table st
e e = stable storage
B —
~ N y - (SSD, HDD etc)
\ /
\ I persistent
processor memory
cache \ |
r 2
oo0o noonn ‘_\
ooo - RAM
OO0 D0 gouuu I . >‘
G J A
| \
/ \
it L = 7 re-ordering \
- (problematic) ~ o

Persistent

Challenges lllustrated

1: mark memory as allocated .
2: 1nitiallize memory erte baCk CaChe.
3: change link of node 1 1: mark allocation
4: change link of node 2 2: 1nltialize mem
5: done = 1 3: change 1link 1
4: change 1link 2
5: done =1
NV memory:

<\\§Crash 3: change link 1

5: done = 1

Upon restart: incorrect state

Flushes & Fences

* |[nstructions that address PM challenges

 Cache-line Flushes

* Asynchronously flush cache line contents to PM
* E.g., clflushopt, clwb on Intel x86

o Stall until any pending flushes complete
* E.g., sfence, LOCK-prefixed instructions on x86

* Fences dominate cost of durability

Challenges lllustrated

1: mark memory as allocated
2: persist allocation
3: 1nitiallize memory
4: persist memory content
5: change link of node 1
6: persist new link
7: change link of node 2
8: persist modified link

9: done =1 4:17

NV memory:

3: change 1link 1
<%\§crash

5: done = 1

erte back cache:
mark allocation
initiallize mem
change 1link 1
change 1link 2
done = 1

U‘Il-b(JONI—‘

Upon restart: incorrect state

Challenges lllustrated

1: mark memory as allocated Write-back cache:
2: persist allocation

3: 1nitiallize memory
4: persist memory content
5: change link of node 1
6: persist new link
7: change link of node 2
8: persist modified link

9: done =1 4:17

NV memory:
1l: mark allocation
2: 1nitialize mem

<\\§Crash 3: change link 1

mark allocation
initialize mem
change link 1
change 1link 2
done = 1

O s w N

Upon restart: incomplete operation

Common Solution: Logging

1: 1log[0] = starting transaction X
2: persist 1log[0]
3: log[l] = allocating a node at address A

4: persist log[1l]
5: mark memory as allocated
6: persist allocation
7: 1nitialize memory
8: persist memory content
9: log[Z2] = previous value of 1link
10: persist logl[2]
11: change link 1
12: persist modified link
13: log[3] = previous value of 1link
14: persist logl[3]
15: change link 2
16: persist modified link
17: done =1
18: persist done
19: mark transaction X as finished

Frequent waiting for data to be persisted

59

The Problem with Logging

* | ogging -> frequent waiting
* slows down data structure performance

» Data structure performance is essential to overall
system performance

Recall: Durable Linearizability

o After a restart, the structure reflects:

 all operations completed (linearized) before the crash;

* (potentially) some operations that were ongoing when
the crash occurred,;

persist .
If crash between

steps 2 and 3, 1. Persistently al!ocate and initialize
violation of 2. Add link to new node

durable 3. Persist link to new node
linearizabilit 61

Log-free Data Structures

*

persist

1. Persistently allocate and initialize node
2. Add marked link to new node
3. Persist link to new node
4. Remove mark

Other threads - persist marked link if needed

Link-and-persist: atomic “modify"” and “persist” link

63

Going Further: Batching

cache line flushes

FLUSH A { _— persistent fence

FLUSHB
FLUSH C

time Batching flushes:

beneficial for performance

o4

Going Further: Batching

* Alink only needs to be persisted when an operation
depends on it

» Store all un-persisted links in a fast concurrent cache
* When an operation directly depends on a link in the cache:
batch flushes of all links in the cache

(and empty the cache)

link cache

Insert(X)

Rea.; (write-back all links

Outline

* What is persistent memory?
 How to define correctness for PM?
e Data Structures for PM

A Lower Bound for PM

06

Persistent Fences %

 Persistent fences prevent re-ordering
» But they are expensive (slow)

Q: Can we avoid persistent fences?

A: No, they are unavoidable.

But 1 fence per operation is sufficient.

67/

You Can't Eliminate Fences

* For any lock-free concurrent implementation of a
persistent object

e there exists an execution E such that

* INn E, every update operation performs at least 1
persistent fence

Lower Bound: Sequential Case

Pq

update

P2

update

P3

update

Lower Bound: Sequential Case

crash
p, | update X
P> update X
oF update X

Lower Bound: Sequential Case

p, | update X

P2

P3

\ update - X

\ update

\|/ X

Need at least 1 persistent fence for every update.

Lower Bound: Concurrent Case

P

P2

update

update

Lower Bound: Concurrent Case

P

P2

update

update

perform the
fence for
both of u

Lower Bound: Concurrent Case

& delayed before

of update -

B update

Lower Bound: Concurrent Case

& delayed before

of update -

B update

\ Needs to
perform its own

fence

Lower Bound: Concurrent Case

P

P2

& delayed before

Needs to
perform its own
fence

Both processes perform one fence per update
operation.

Recap — Persistent Memory

* What is persistent memory?

* How to define correctness for PM?

* Efficient Data Structures for PM

* A Lower Bound for PM — can’'t always avoid fences

Papers Referenced

1. Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra
Marathe, Igor Zablotchi. The Impact of RDMA on Agreement. PODC
2019.

2. Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra
Marathe, Athanasios Xygkis, Igor Zablotchi. Microsecond Consensus

for Microsecond Applications. OSDI 2020.

3. Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, lgor Zablotchi.
Log-Free Concurrent Data Structures. In USENIX ATC 2018.

4. Nachshon Cohen, Rachid Guerraoui, lgor Zablotchi. The Inherent Cost
of Remembering Consistently. SPAA 2019.

