
Concurrent programming:
From theory to practice

Concurrent Algorithms 2020
Vasileios Trigonakis
Principal Member of Technical Staff
Oracle Labs, Zurich

1

2

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

3

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

 Impossibilities
 Upper/Lower bounds
 Techniques
 System models
 Correctness proofs

Design
(pseudo-code)

4

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

 Impossibilities
 Upper/Lower bounds
 Techniques
 System models
 Correctness proofs

Design
(pseudo-code)

 System models
 shared memory
 message passing

 Finite memory
 Practicality issues

 re-usable objects
 Performance

Design
(pseudo-code,

prototype)

5

From theory to practice

Theoretical
(design)

Practical
(design)

Practical
(implementation)

 Impossibilities
 Upper/Lower bounds
 Techniques
 System models
 Correctness proofs

Design
(pseudo-code)

 System models
 shared memory
 message passing

 Finite memory
 Practicality issues

 re-usable objects
 Performance

Design
(pseudo-code,

prototype)

 Hardware
 Which atomic ops
 Memory consistency
 Cache coherence
 Locality
 Performance
 Scalability

Implementation
(code)

6

Outline

 CPU caches

 Cache coherence

 Placement of data

 Graph processing: Concurrent data structures

7

Outline

 CPU caches

 Cache coherence

 Placement of data

 Graph processing: Concurrent data structures

8

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

Core

Disk

9

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

 Core → Memory = ~100ns

Core

Disk

Memory

10

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

 Core → Memory = ~100ns

 Cache

 Large = slow

 Medium = medium

 Small = fast

Core

Disk

Memory

Cache

11

Why do we use caching?

 Core freq: 2GHz = 0.5 ns / instr

 Core → Disk = ~ms

 Core → Memory = ~100ns

 Cache

 Core → L3 = ~20ns

 Core → L2 = ~7ns

 Core → L1 = ~1ns

Core

Disk

Memory

L3

L2

L1

12

Typical server configurations

 Intel Xeon

 14 cores @ 2.4GHz

 L1: 32KB

 L2: 256KB

 L3: 40MB

 Memory: 256GB

 AMD Opteron

 18 cores @ 2.4GHz

 L1: 64KB

 L2: 512KB

 L3: 20MB

 Memory: 256GB

13

Experiment
Throughput of accessing some memory,

depending on the memory size

14

Outline

 CPU caches

 Cache coherence

 Placement of data

 Graph processing: Concurrent data structures

15

Until ~2004: single-cores

 Core freq: 3+GHz

 Core → Disk

 Core → Memory

 Cache

 Core → L3

 Core → L2

 Core → L1

Core

Disk

Memory

L2

L1

16

After ~2004: multi-cores

 Core freq: ~2GHz

 Core → Disk

 Core → Memory

 Cache

 Core → shared L3

 Core → L2

 Core → L1

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1

17

Multi-cores with private caches

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1

Private
=

multiple
copies

18

Cache coherence for consistency

Core 0 has X and Core 1

 wants to write on X

 wants to read X

 did Core 0 write or read X?

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1X

19

Cache coherence principles

 To perform a write

 invalidate all readers, or

 previous writer

 To perform a read

 find the latest copy

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1X

20

Cache coherence with MESI

 A state diagram

 State (per cache line)

 Modified: the only dirty copy

 Exclusive: the only clean copy

 Shared: a clean copy

 Invalid: useless data

21

The ultimate goal for scalability

 Possible states

 Modified: the only dirty copy

 Exclusive: the only clean copy

 Shared: a clean copy

 Invalid: useless data

 Which state is our “favorite”?

22

The ultimate goal for scalability

 Possible states

 Modified: the only dirty copy

 Exclusive: the only clean copy

Shared: a clean copy
 Invalid: useless data

= threads can keep the data close (L1 cache)

= faster

23

Experiment
The effects of false sharing

24

Outline

 CPU caches

 Cache coherence

 Placement of data

 Graph processing: Concurrent data structures

25

Uniformity vs. non-uniformity

 Typical desktop machine

 Typical server machine

= Uniform
C C

CachesM
e

m
o

ry
M

e
m

o
ry

CachesM
e

m
o

ry C C C C

Caches

C

M
e

m
o

ry

C C C

= non-Uniform

26

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

27

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

28

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

29

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

30

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

31

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

80

32

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

80

90

33

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

1

7

20

40

80

90 130

34

Latency (ns) to access data

C C

M
e
m

o
ry

C

M
e

m
o

ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

Conclusion: we need to take care of locality

1

7

40

80

90 130

20

35

Experiment
The effects of locality

36

Experiment
The effects of locality

vtrigona $./test_locality -x0 –y1
Size: 8 counters = 1 cache lines
Thread 0 on core : 0
Thread 1 on core : 2
Number of threads: 2
Throughput : 104.27 Mop/s

vtrigona $./test_locality -x0 -y10
Size: 8 counters = 1 cache lines
Thread 0 on core : 0
Thread 1 on core : 10
Number of threads: 2
Throughput : 43.16 Mop/s

Same memory node

Different memory nodes

37

Outline

 CPU caches

 Cache coherence

 Placement of data

 Graph processing: Concurrent data structures

Graph processing

Relational view
Name Likes

Vasilis Breaking bad

Rachid Dexter

Vasilis Dexter

Name Similar

Breaking bad Dexter

Dexter Breaking bad

P
e
o
p
le

T
a
b
le

S
e
ri
e
s

T
a
b
le

38

Graph processing

Relational view
Name Likes

Vasilis Breaking bad

Rachid Dexter

Vasilis Dexter

Graph view

Name Similar

Breaking bad Dexter

Dexter Breaking bad

P
e
o
p
le

T
a
b
le

S
e
ri
e
s

T
a
b
le

Vasilis
:people

Rachid
:people

Breaking bad
:series

Dexter
:series

:l
ik

e
s

:l
ik

e
s

:similar

Graphs keep the connections among entities materialized
39

Graph analytics

• Graphs have been studied in Math for centuries

• Since Euler’s “Seven Bridges of Königsberg”, 1736

• Repeatedly traverse your graph and calculate math properties

• Classic graph problems

• Graph isomorphism

• Travelling salesman’s problem

• Max flow, min cut

• …

• More recent developments

• Pagerank

• Infomap

40

Graph queries

• Graph pattern matching

• Query graphs to find sub-graphs that match a pattern
e.g., triangle counting

• Essentially: SQL for graphs

41

Graph queries

• Graph pattern matching

• Query graphs to find sub-graphs that match a pattern
e.g., triangle counting

• Essentially: SQL for graphs

• Example: Friends of my friends
SELECT p1, p3, COUNT(p2)
MATCH (p1)-[:friend]->(p2)->[:friend]->(p3),

! (p1)-[:friend]->(p3)
WHERE p1.country = p2.country
GROUP BY p1, p3
ORDER BY COUNT(p2) DESC

42

spouse

friend

friend

friend

Graph processing frequently involves both analytics and queries

Dissecting a graph
processing system

with a focus on (concurrent) data structures

43

Dissecting a graph
processing system

Preparing for a job interview
with a focus on (concurrent) data structures

44

Architecture of a graph processing system

45

Graph

Architecture of a graph processing system

46

Graph

Tons of other data and metadata to store

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

Graph

47

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

Graph

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

48

49

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

Graph

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

1 2 3 4

{people, male}  {2,4}

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • tmp graph structure
• append only
• dynamic schema

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X 50

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • tmp graph structure
• append only
• dynamic schema
 segmented table

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X 51

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • tmp graph structure
• append only
• dynamic schema
 segmented table

• Classic graph structures

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X 52

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • tmp graph structure
• append only
• dynamic schema
 segmented table

• Classic graph structures
1. connectivity matrix

2. adjacency list

3. compressed source row (CSR)

0 1 2

0 x

1 x x

2 x

0

1

2

0

0 2

1

1 3 4

0 0 2 1

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X 53

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Mapping user ids to internal ids
• create once
• read-only after

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

54

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Mapping user ids to internal ids
• create once
• read-only after
 hash map, lock-free reads

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

55

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Mapping user ids to internal ids
• create once
• read-only after
 hash map, lock-free reads

• Mapping internal ids to user ids
• create once
• read-only after
• fixed key range: [0, N}

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

56

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Mapping user ids to internal ids
• create once
• read-only after
 hash map, lock-free reads

• Mapping internal ids to user ids
• create once
• read-only after
• fixed key range: [0, N}
 (sequential) array

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

57

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Storing labels
• usually a small enumeration

e.g., person, female, male
• storing strings is expensive

“person”  ~ 7 bytes
• comparing strings is expensive

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

58

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Storing labels
• usually a small enumeration

e.g., person, female, male
• storing strings is expensive

“person”  ~ 7 bytes
• comparing strings is expensive
 dictionary encoding, e.g.,

• person  0
• female  1
• male  2

• Ofc, hash map to
• store those
• translate during runtime

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

59

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Property
• one type per property, e.g., int
• 1:1 mapping with vertices/edges

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary

60

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Property
• one type per property, e.g., int
• 1:1 mapping with vertices/edges
 (sequential) arrays

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary

61

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Property
• one type per property, e.g., int
• 1:1 mapping with vertices/edges
 (sequential) arrays

• Lifetime management
(and other counters)

• cache coherence: atomic
counters can be expensive

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary

62

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph • Property
• one type per property, e.g., int
• 1:1 mapping with vertices/edges
 (sequential) arrays

• Lifetime management
(and other counters)

• cache coherence: atomic
counters can be expensive

• Two potential solutions
1. approximate counters
2. stripped counters

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary
Thread local: counter[0] counter[1] counter[2]

increment(int by) { counter[my_thread_id] += by; }
int value() {

int sum = 0;
for (int i = 0; i < num_threads; i++) { sum += counter[i]; }
return sum;

}

63

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary (= map)

array

stripped counter

Structure # Usages

array / buffer 5

map 2

Score

64

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Indices
• Used for speeding up “queries”

• Which vertices have label :person?
• Which edges have value > 1000?

65

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Indices
• Used for speeding up “queries”

• Which vertices have label :person?
• Which edges have value > 1000?

maps, trees

66

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Indices
• Used for speeding up “queries”

• Which vertices have label :person?
• Which edges have value > 1000?

maps, trees

• Buffer management
• In “real” systems, resource

management is very important
• buffer pools

• no order
• insertions and deletions
• no keys

67

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Indices
• Used for speeding up “queries”

• Which vertices have label :person?
• Which edges have value > 1000?

maps, trees

• Buffer management
• In “real” systems, resource

management is very important
• buffer pools

• no order
• insertions and deletions
• no keys

 Fixed num object pool: array
 Otherwise: list
 Variable-sized elements: heap

68

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Task and job scheduling
• producers create and share tasks
• consumers get and handle tasks
• insertions and deletions
• usually FIFO requirements

map / tree

array

69

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Task and job scheduling
• producers create and share tasks
• consumers get and handle tasks
• insertions and deletions
• usually FIFO requirements
 queues

• Storing / querying sets of labels
• set equality expensive
• usually common groups

e.g., {person, female}, {person, male}

map / tree

array

70

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Task and job scheduling
• producers create and share tasks
• consumers get and handle tasks
• insertions and deletions
• usually FIFO requirements
 queues

• Storing / querying sets of labels
• set equality expensive
• usually common groups

e.g., {person, female}, {person, male}

 2-level dictionary encoding
• {person, female}  0
• {person, male}  1

map / tree

array

71

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Task and job scheduling
• producers create and share tasks
• consumers get and handle tasks
• insertions and deletions
• usually FIFO requirements
 queues

• Storing / querying sets of labels
• set equality expensive
• usually common groups

e.g., {person, female}, {person, male}

 2-level dictionary encoding
• {person, female}  0
• {person, male}  1

• Giving unique ids (renaming)

map / tree

array

72

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Task and job scheduling
• produces create and share tasks
• consumers get and handle tasks
• insertions and deletions
• usually FIFO requirements
 queues

• Storing / querying sets of labels
• set equality expensive
• usually common groups

e.g., {person, female}, {person, male}

 2-level dictionary encoding
• {person, female}  0
• {person, male}  1

• Giving unique ids (renaming)
 tree, map, set, counter, other?

map / tree

array

73

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

map / tree

array

queue

dictionary (= map)

map / tree / set

Structure # Usages

array / buffer 6

map 5

tree / heap 2

set 1

queue 1

Score

74

75

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Group by
1. Mapping from keys to values
2. Atomic value aggregations

e.g., COUNT, SUM, MAX
• insertion only

76

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Group by
1. Mapping from keys to values
2. Atomic value aggregations

e.g., COUNT, SUM, MAX
• insertion only
 hash map
 atomic inc / sum / max, etc.

77

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Group by
1. Mapping from keys to values
2. Atomic value aggregations

e.g., COUNT, SUM, MAX
• insertion only
 hash map
 atomic inc / sum / max, etc.

• Join
• create a map of the small table
• insertion phase, followed by
• probing phase

78

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Group by
1. Mapping from keys to values
2. Atomic value aggregations

e.g., COUNT, SUM, MAX
• insertion only
 hash map
 atomic inc / sum / max, etc.

• Join
• create a map of the small table
• insertion phase, followed by
• probing phase
 hash map, lock-free probing

79

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Distinct
• can be solved with sorting, or

map / atomics

80

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Distinct
• can be solved with sorting, or
 hash set

map / atomics

81

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Distinct
• can be solved with sorting, or
 hash set

• Limit (top k)
• can be solved with sorting, or
• different specialized structures

map / atomics

82

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Distinct
• can be solved with sorting, or
 hash set

• Limit (top k)
• can be solved with sorting, or
• different specialized structures
 tree
 heap
 ~ list
 array (e.g., 2 elements only)
 register (1 element only)

map / atomics

83

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Breadth-first search (BFS)
• FIFO order
• track visited vertices

map / atomics

hash set

tree / heap / list

1

0

2

3 4

84

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Breadth-first search (BFS)
• FIFO order
• track visited vertices
 queue
 set

map / atomics

hash set

tree / heap / list

1

0

2

3 4

85

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Breadth-first search (BFS)
• FIFO order
• track visited vertices
 queue
 set

• Depth-first search (DFS)
• LIFO order
• track visited vertices

map / atomics

hash set

tree / heap / list

1

0

2

3 4

1

0

3

2 4

86

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

• Breadth-first search (BFS)
• FIFO order
• track visited vertices
 queue
 set

• Depth-first search (DFS)
• LIFO order
• track visited vertices
 stack
 set

map / atomics

hash set

tree / heap / list

1

0

2

3 4

1

0

3

2 4

87

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis, 2
Rachid, 1

Vasilis
Rachid
Vasilis

Vasilis
Rachid

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

32
23
13

DFS

map / atomics

hash set

tree / heap / list

queue / set

stack / set

Structure # Usages

array / buffer 7

map 6

set 4

tree / heap 3

queue 2

stack 1

list 1

Score

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes
“Rachid”, “Dexter”, :likes
“Vasilis”, “Dexter”, :likes
“Dexter”, “Breaking bad”, :similar
“Breaking bad”, “Dexter”, :similar

Graph

user-ids - internal ids
Vasilis  0
Rachid  1
Breaking bad  2
Dexter  3

0  Vasilis
1  Rachid
2  Breaking bad
3  Dexter

labels
:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich
“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary

array

stripped counter

buffer management

task / job scheduling

labels
:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

map / tree

array

queue

dictionary

map / tree / set
88

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad
Rachid, Dexter
Vasilis, Dexter

Vasilis
Rachid
Vasilis

11 12 0 9 8 13
8 9 11 23 32 9
1 2 3 5 7 3 2 0

DFS

map / atomics

hash set

tree / heap / list

queue / set

stack / set

Conclusions

• Both theory and practice are necessary for

• Designing, and

• Implementing fast / scalable data structures

• Hardware plays a huge role on implementations

• How and which memory access patterns to use

• (Concurrent) Data structures

• The backbone of every system

• An “open” and challenging area or research

vasileios.trigonakis@oracle.com – internships++
89

