
Concurrent Algorithms October 26, 2021

Exercise 3 Solution

Problem 1. The transformation does not work for multiple readers (the result is not an atomic register).
The non-atomic execution in Figure 1 is possible in this case. Since the register is regular, the read by R1
may read the value 2 being concurrently written by W. Since this is R1’s first read operation, the timestamp
it obtains for value 2 is higher than its local timestamp. Later, the read by R2 (also concurrent with Write(2))
may read the previous value of the register (1). Since this is R2’s first read operation, the timestamp it
obtains for value 1 is also higher than its local timestamp.

Read: 1

Read: 2

Write(1) Write(2)
W

R1

R2

Figure 1: An example execution that violates atomicity.

Problem 2. The transformation does not work for multiple writers because each writer has a local times-
tamp, i.e., the different writers do not share the same time. In fact, consider two writers W1 and W2. W1 is a
more active writer than W2. Assume W1 has already written 10 times to the register (t1 = 10). After that, W2
writes for the first time to the register, its local timestamp will then be less than 10 (t2 = 1). Therefore, any
subsequent read after W2’s write will miss W2’s newly written value, and return the last value written by
W1. This violates the sequential property of registers, i.e., a sequential read after a write operation should
always return the last written value.

Problem 3. The notion of regular registers is not well defined in the case of multiple writers. Thus,
this exercise is not in the scope of the exam, and is only left as practice.

Yes, the transformation works. The proof follows:

Let Reg[N] denote the vector of binary MWMR registers that would compose the N-valued MWMR
regular register R. To prove that the same algorithm yields an N-valued MWMR regular register, we must
prove that any read operation always returns a valid value from R. As regularity is only well-defined for
single writer registers, we provide now a generalization. When considering the read operation, a valid value
can be either:

• any value v written by a concurrent write operation (v ∈ concurrent).

p-1

• any value v written by the latest starting and completed write operation1, or any operations concur-
rent with it (v ∈ recent).

For simplicity and without loss of generality, we also restrict recent to exclude any operation also in
concurrent, so that recent ∩ concurrent = ∅.

For any single reader, we prove the following2:

1. ∃i : Reg[i] = 1

2. Reg[i] = 1 ⇒ i ∈ recent ∨ i ∈ concurrent

The first case means that the reader always terminates and returns a value while the second case ensures
that this value is valid (for a regular register). This concludes our proof after we finish proving each of the
two Lemmas.

Lemma 1 ∃i : Reg[i] = 1

Proof Reg[0] is initially 1. If it is read 0, it follows that some R.write(j) : j > 0 has completed or is con-
currently writing 0 to Reg[0]. As the writing is done right to left, it must then have finished writing 1 in
Reg[j]. If Reg[j] = 0, the same logic applies for some k > j recursively up to Reg[N], which is never erased
(Reg[N].write(0) is never called) by any writer.

Lemma 2 Reg[i] = 1 ⇒ i ∈ recent ∨ i ∈ concurrent

Proof Take the first (and only) i : Reg[i] = 1 reached by the reader (i.e., the value returned by the read).
Suppose for the sake of contradiction that i /∈ concurrent ∧ i /∈ recent. This is equivalent to both:

1. There is no concurrent write R.write(i) (⇐⇒ i /∈ concurrent). Let us denote the last completed (with
earliest starting point) R.write(i) by any writer by Wi.

2. ∃Wj = R.write(j) : j 6= i ∧ j ∈ recent ∧ Wj started after Wi completed (⇐⇒ i /∈ recent)

Looking at the second statement, there are only two possible cases:

• a) If j > i, then the read of Reg[i] = 0 since Reg[i] is regular, R.write[j] should have finished writing
Reg[i].write(0) and there are no writes of Reg[i].write(1) concurrent with R.write(j) (2.) or after (1.
and j ∈ recent). But Reg[i] = 1. Contradiction

• b) Else j < i, we have that Reg[j] = 0 (because Reg[i] = 1 ⇒ Reg[j] = 0, ∀j < i, ATTA3). This
means that Reg[j] must have been erased by a later or concurrent write Wk = R.write(k) : k > j
(⇒ k ∈ recent ∨ k ∈ concurrent)

– b.1) If k > i then Wk should have already finished Reg[i].write(0) since it is either writing of has
finished writing Reg[j].write(0) and it writes Reg[i].write(0) first ATTA (i > j), which was last set
to 1 before Wj started (by supposition). But Reg[i] = 1. Contradiction

– b.2) If k < i then we have case b) again (recursively). Since there are a finite number of values
between j and i, eventually we end up in case b.3)

1By this, we mean the write operation with the latest starting point that has returned before the read in question started.
2Reg[i] = v means that the reader in question has read v from Reg[i] (we only ever talk about a single reader).
3According to the algorithm

p-2

– b.3) If k = i, in which case Wk = R.write(i) which erased Reg[j] must have been concurrent with
Wj, contradicting 2, or happened after Wj and is concurrent with this read (since j ∈ recent),
contradicting 1. Contradiction

This concludes the contradiction, so we have: i /∈ concurrent ∧ i /∈ recent ⇐⇒ i ∈ recent ∨ i ∈
concurrent. Thus i is a valid return.

p-3

