
Concurrent programming:
From theory to practice

Vasileios Trigonakis

Principal Researcher

Oracle Labs Zurich

13.Dec.2021

Concurrent Algorithms 2021

Vasileios Trigonakis

• Principal Researcher @ Oracle Labs
• PhD in Computer Science from EPFL
• Started at Oracle in 2016
• Leading the PGX Distributed (PGX.D) project

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

in/vtrigonakis

2

https://www.linkedin.com/in/vtrigonakis

From theory to practice

3

Theoretical

(design)

Practical

(design)

Practical

(implementation)

 Impossibilities

 Upper/Lower bounds

 Techniques

 System models

 Correctness proofs

Design

(pseudo-code)

 System models

 shared memory

 message passing

 Finite memory

 Practicality issues

 re-usable objects

 Performance

Design

(pseudo-code,

prototype)

 Hardware

 Which atomic ops

 Memory consistency

 Cache coherence

 Locality

 Performance

 Scalability

Implementation

(code)
Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

4 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

5 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Why do we use caching?

Core freq: 2GHz = 0.5 ns / instr

Core → Disk = ~ms

Core → Memory = ~100ns

Cache

• Large = slow

• Medium = medium

• Small = fast

6

Core

Disk

Cache

Memory

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Why do we use caching?

Core freq: 2GHz = 0.5 ns / instr

Core → Disk = ~ms

Core → Memory = ~100ns

Cache

• Core → L3 = ~20ns

• Core → L2 = ~7ns

• Core → L1 = ~1ns

7

Core

Disk

Memory

L3

L2

L1

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Typical server configurations

Intel Xeon

• 14 cores @ 2.4GHz

• L1: 32KB

• L2: 256KB

• L3: 40MB

• Memory: 512GB

AMD Opteron

• 18 cores @ 2.4GHz

• L1: 64KB

• L2: 512KB

• L3: 20MB

• Memory: 512GB

8 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

9

Experiment

Throughput of accessing some memory,

depending on the memory size

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

10 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Until ~2004: single-cores

Single core

Core freq: 3+GHz

Core → Disk

Core → Memory

Cache

• Core → L2

• Core → L1

11

Core

Disk

Memory

L2

L1

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

After ~2004: multi-cores

Multiple cores

Core freq: ~2GHz

Core → Disk

Core → Memory

Cache

• Core → shared L3

• Core → L2

• Core → L1

12

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Private

multiple

copies

Cache coherence for consistency

Core 0 has X and Core 1

• wants to write on X

• wants to read X

• did Core 0 write or read X?

To perform a write

• invalidate all readers, or

• previous writer

To perform a read

• find the latest copy

13

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1X

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Cache coherence with MESI

A state diagram

State (per cache line)

• Modified: the only dirty copy

• Exclusive: the only clean copy

• Shared: a clean copy

• Invalid: useless data

Which state is our “favorite?”

14 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

The ultimate goal for scalability

A state diagram

State (per cache line)

• Modified: the only dirty copy

• Exclusive: the only clean copy

•Shared: a clean copy

• Invalid: useless data

= threads can keep the data close (L1 cache)

= faster

15 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

16

Experiment

The effects of false sharing

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

17 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Uniformity vs. non-uniformity

Typical desktop machine

Typical server machine

18

= Uniform
C C

CachesM
e
m

o
ry

M
e
m

o
ry

CachesM
e
m

o
ry C C C C

Caches

C
M

e
m

o
ry

C C C

= non-Uniform

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

(aka. NUMA)

Latency (ns) to access data in a NUMA multi-core server

19

C C
M

e
m

o
ry

C
M

e
m

o
ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

Conclusion: we need to take care of locality

1

7

40

80

90 130

20

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

20

Experiment

The effects of locality

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

21

Experiment

The effects of locality

vtrigona $./test_locality -x0 –y1
Size: 8 counters = 1 cache lines
Thread 0 on core : 0
Thread 1 on core : 2
Number of threads: 2
Throughput : 104.27 Mop/s

vtrigona $./test_locality -x0 -y10
Size: 8 counters = 1 cache lines
Thread 0 on core : 0
Thread 1 on core : 10
Number of threads: 2
Throughput : 43.16 Mop/s

Same memory node

Different memory nodes

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

22 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Your Data is a Graph!

• Represent it as a property graph

• Entities are vertices

• Relationships are edges
• Annotate your graph

• Labels identify vertices and edges

• Properties describe vertices and edges
• For the purpose of

• Data modeling

• Data analysis

:Person
Name = “Vasilis”

:Institution
Name = “EPFL”

:Presented
Date=2021.12.13

Navigate multi-hop relationships quickly (instead of joins)

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.23

Relational (Database) Model  Property Graph Model

user_id
(PK)

name

0 Vasilis

1 Lucas

… …

user_id post_id

0 0

0 1

1 1

author_id post_id
(PK)

title

1 0 ETH

123 1 Oracle

… … …

users

user_likes

posts

graph ♥

:user
name=Vasilis

:user
name=Lucas

:post
title=ETH

:post
title=Oracle

:li
k

e
s

:author

Essentially having “materialized joins”

:li
k

e
s

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.24

Main Approaches of Graph Processing

1. Computational graph analytics [ASPLOS’12, VLDB’16]

• Iterate the graph multiple times and compute
mathematical properties using Greenmarl / PGX
Algorithm (e.g., Pagerank)

• e.g, graph.getVertices().forEach(n -> …)

2. Graph querying and pattern matching [GRADES’16/17, VLDB’16]

• Query the graph using PGQL to find sub-graphs that
match to the given relationship pattern

• e.g., SELECT … MATCH (a) –[edge]–> (b) …

3. Graph ML (new)

• Use the structural information latent in graphs

• e.g., graph similarity

spouse

friend

friend

friend

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.25

Dissecting a graph processing system
with a focus on (concurrent) data structures

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.26

Dissecting a graph processing system
and preparing for a job interview
with a focus on (concurrent) data structures

27 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Architecture of a graph processing system

28

Graph

Tons of other data and metadata to store

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

29

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

user-ids - internal ids
Vasilis  0

Rachid  1

Breaking bad  2

Dexter  3

0  Vasilis

1  Rachid

2  Breaking bad

3  Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

Graph

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

1 2 3 4

{people, male}  {2,4}

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph • tmp graph structure
• append only
• dynamic schema
 segmented table

• Classic graph structures
1. connectivity matrix

2. adjacency list

3. compressed source row (CSR)

0 1 2

0 x

1 x x

2 x

0

1

2

0

0 2

1

1 3 4

0 0 2 1

user-ids - internal ids
Vasilis  0

Rachid  1

Breaking bad  2

Dexter  3

0  Vasilis

1  Rachid

2  Breaking bad

3  Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

30 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph • Storing labels
• usually a small enumeration

e.g., person, female, male
• storing strings is expensive

“person”  ~ 7 bytes
• comparing strings is expensive
 dictionary encoding, e.g.,

• person  0
• female  1
• male  2

• Ofc, hash map to
• store those
• translate during runtime

user-ids - internal ids
Vasilis  0

Rachid  1

Breaking bad  2

Dexter  3

0  Vasilis

1  Rachid

2  Breaking bad

3  Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

31 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph • Property
• one type per property, e.g., int
• 1:1 mapping with vertices/edges
 (sequential) arrays

• Lifetime management
(and other counters)
• cache coherence: atomic counters

can be expensive
• Two potential solutions

1. approximate counters
2. stripped counters

user-ids - internal ids
Vasilis  0

Rachid  1

Breaking bad  2

Dexter  3

0  Vasilis

1  Rachid

2  Breaking bad

3  Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary
Thread local: counter[0] counter[1] counter[2]

increment(int by) { counter[my_thread_id] += by; }

int value() {

int sum = 0;

for (int i = 0; i < num_threads; i++) { sum += counter[i]; }

return sum;

}
32 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph

user-ids - internal ids
Vasilis  0

Rachid  1

Breaking bad  2

Dexter  3

0  Vasilis

1  Rachid

2  Breaking bad

3  Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary (= map)

array

stripped counter

Structure # Usages

array / buffer 5

map 2

Score

33 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Indices
• Used for speeding up “queries”

• Which vertices have label :person?
• Which edges have value > 1000?

maps, trees

• Buffer management
• In “real” systems, resource

management is very important
• buffer pools
• no order
• insertions and deletions
• no keys

 Fixed num object pool: array
 Otherwise: list
 Variable-sized elements: heap

34 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

• Task and job scheduling
• produces create and share tasks
• consumers get and handle tasks
• insertions and deletions
• usually FIFO requirements
 queues

• Storing / querying sets of labels
• set equality expensive
• usually common groups

e.g., {person, female}, {person, male}

 2-level dictionary encoding
• {person, female}  0
• {person, male}  1

• Giving unique ids (renaming)
 tree, map, set, counter, other?

map / tree

array

35
Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

map / tree

array

queue

dictionary (= map)

map / tree / set

Structure # Usages

array / buffer 6

map 5

tree / heap 2

set 1

queue 1

Score

36 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

37

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Group by
1. Mapping from keys to values
2. Atomic value aggregations

e.g., COUNT, SUM, MAX
• insertion only
 hash map
 atomic inc / sum / max, etc.

• Join
• create a map of the small table
• insertion phase, followed by
• probing phase
 hash map, lock-free probing

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

38

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Distinct
• can be solved with sorting, or

map / atomics

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

39

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Distinct
• can be solved with sorting, or
 hash set

• Limit (top k)
• can be solved with sorting, or
• different specialized structures
 tree
 heap
 ~ list
 array (e.g., 2 elements only)
 register (1 element only)

map / atomics

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

40

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Breadth-first search (BFS)
• FIFO order
• track visited vertices
 queue
 set

• Depth-first search (DFS)
• LIFO order
• track visited vertices
 stack
 set

map / atomics

hash set

tree / heap / list

1

0

2

3 4

1

0

3

2 4

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

41

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

map / atomics

hash set

tree / heap / list

queue / set

stack / set

Structure # Usages

array / buffer 7

map 6

set 4

tree / heap 3

queue 2

stack 1

list 1

Score

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph

user-ids - internal ids
Vasilis  0

Rachid  1

Breaking bad  2

Dexter  3

0  Vasilis

1  Rachid

2  Breaking bad

3  Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 33, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary

array

stripped counter

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male}  {2,4}

map / tree

array

queue

dictionary

map / tree / set
42

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis

Rachid

Vasilis

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

DFS

map / atomics

hash set

tree / heap / list

queue / set

stack / set
Copyright © 2021,
Oracle and/or its affiliates.
All rights reserved.

Y
o

u
r

n
e

w
 c

h
e

a
ts

h
e

e
t

fo
r

in
te

rv
ie

w
s!

Conclusions

• Both theory and practice are necessary for

• Designing, and

• Implementing fast / scalable data structures

• Hardware plays a huge role on implementations

• How and which memory access patterns to use

• (Concurrent) Data structures

• The backbone of every system

• An “open” and challenging area or research

43 Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Identify, explore, and transfer new technologies
that have the potential to

substantially improve Oracle's business.

Oracle Labs Mission Statement

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.44

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

Visit the Oracle Labs Internship Page: labs.oracle.com/pls/apex/labs/r/labs/internships

or find our topics in EPFL’s portal

• Automated Machine Learning with Explainability (AutoMLx)

• Automating OCA Verification of GitHub Pull Requests

• BPF Linux Schedulers

• Extending a Distributed Graph Engine (Oracle Labs PGX)

• Extending a Web-Based Enterprise Data Science Platform

• Graph Machine Learning at Oracle

• Graph Support in the Oracle Database

• Machine Learning and Data Analysis Techniques for Domain Global Graphs

• Machine Learning for Optimizing Oracle Database Performance

• Machine Learning Processing in DB Systems

• Oracle Database Multilingual Engine - Modern Programming Languages in the Database

or just send us an email at epfl-labs_ch@oracle.com

Internship and job opportunities

45

https://labs.oracle.com/pls/apex/labs/r/labs/internships
mailto:epfl-labs_ch@oracle.com

Using the Oracle Cloud for free

Everybody
Oracle Cloud Always-Free Tier: oracle.com/cloud/free/

Universities and Schools
Oracle Academy: academy.oracle.com

Research Institutions
Oracle For Research: oracle.com/oracle-for-research/

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.46

https://www.oracle.com/cloud/free/
https://academy.oracle.com/
https://www.oracle.com/oracle-for-research/

Our mission is to help people
see data in new ways, discover insights,
unlock endless possibilities.

