ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Concurrent Data Structures
Concurrent Algorithms 2016

Tudor David

(based on slides by Vasileios Trigonakis)

Tudor David | 11.2016 1

Da u

R

 Constructs for efficiently storing and retrieving data
— Different types: lists, hash tables, trees, queues, ...

 Accessed through the DS interface
— Depends on the DS type, but always includes
— Store an element
— Retrieve an element
e Element
— Set: just one value
— Map: key/value pair

) .

.(I ﬂ- Tudor David | 11.2016 2
ECOLE POLYTECHNIQLIE

FEDERALE DE LAUSAMME

u (CDSs)

s

 Concurrently accessed by multiple threads
— Through the CDS interface - linearizable operations!

 Really important on multi-cores
 Used in most software systems

Liwé monetdb)

‘ LEVELDB ffﬁ RocksDB . mongoDB

.(I)ﬂ- Tudor David | 11.2016
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANMNE

ut in practice?

R

 Progress of individual operations - sometimes

e More often:
— Number of operations per second (throughput)

— The evolution of throughput as we increase the number
of threads (scalability)

[N
o1

(TR
o

Throughput (Mop/s)

1 10 20 30 40

Threads
.(I)ﬂ- Tudor David | 11.2016 4
EcoLE PoTICHNIQUE

R

delete(6) = = =

1 et 2 =2 3 = 5 2 6 > &

Insert(4)

» Asequence of elements (nodes) ?tfuct node
* Interface value_t value;
— search (aka contains) struct node” next;

— Insert ;

— remove (aka delete)
.(I)ﬂ.qu Tudor David | 11.2016 5

Search Data Structu res

i G o

Interface search(k)
4
1. search !
update(k) |
2. Insert ! parse(k) modify(k)
Updates N .
remov / / /
: ,’ / / /
. Semantlcs ' S ,!
/ s ’ ,/ /
1. read-only - ==~ PPt R4
2. read-only ----""" -7 _o”
3. read-only ----""" __-°"
4. read-write = === - -7

(' TudorDavid | 112016 6
WE
NE

Optimistic vs. Pessimistic Concurrency

i

20-core Xeon
1024 elements

12

RN
()

e
traverse e

&

o

nN

Throughput (Mop/s)

-="pad" linked list =—"good" linked list

(Lesson,) Optimistic concurrency is the only way to get scalability

FCHMIQUIE
LALSANNE

Tudor David | 11.2016

S In Optimistic rency

R

e Concurrency Control « Memory Reclamation

How threads synchronize How and when threads free
their writes to the shared and reuse the shared
memory (e.g., nodes) memory (e.g., nodes)
— Locks — Garbage collectors
— CAS — Hazard pointers
— Transactional memory — RCU
— Quiescent states

) .

.(I ﬂ- Tudor David | 11.2016 8
ECOLE POLYTECHNIQLIE

FEDERALE DE LAUSAMME

for Optimistic

R

Cy Control (OCC)

A

e RCU: slow In the presence of updates
— (also a memory reclamation scheme)

e STM: slow in general
« HTM: not ubiquitous, not very fast (yet)

 Wait-free algorithms: slow in general
(Optimistic) Lock-free algorithms: ©

Optimistic lock-based algorithms: ©

We either need a lock-free or an optimistic lock-based algorithm
5&!\1(&!% Tudor David | 11.2016 9

s. Target platform

R

2-socket Intel Xeon E5-2680 v2 Ivy Bridge
— 20 cores @ 2.8 GHz, 40 hyper-threads
— 25 MB LLC (per socket)
— 256GB RAM

.(I)ﬂ. Tudor David | 11.2016 10
bt o S

ConcurrentLlnked Llsts 5% Updates 1074 eloments

A A i

5% updates

—Blocking —Lock-free —Wait-free

[N
N

o

Throughput (Mops@

o DB OO o

1 5 9 13 17 21 25 29 33 37
Number of threads

Wait-free algorithm is slow @
5&!\1&!@5 Tudor David | 11.2016 11

Optimistic ency in Data S

o

oattern | optimistic prepare perform)
_(non-synchronized) (synchronized) .

validate

optimistic prepare perform

failed detect conflicting

concurrent operations

Example find Insertion spot validate

linked list (O Or OO

) N’ N’ N’ N’ N’ N’ N’
Insert

insert ¥

Validation plays a key role in concurrent data structures
5&!\’!{&!@(Tudor David | 11.2016

12

Validation in Concurrent Data Structures
s

 Lock-free: atomic operations
&)ptimistic prepare I validate & perform (atomic ops) }

/

failed
— marking pointers, flags, helping, ...

e Lock-based: lock = validate

@timistic preparellock validate performI unlock }

{ unlock

— flags, pointer reversal, parsing twice, ...

Validation is what differentiates algorithms
I(rH

Tudor David | 11.2016 13

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Let's design two concurrent linked lists:
A lock-free and a lock-based

Tudor David | 11.2016 14

Lock-free Sorted Linked List: Naive

R

Search find spot return
Insert find modification spot CAS

— |l — s — s |l
N N N N’ N’ N’ N N

find modification spot CAS

Delete W
= | = | = | = = =
N N’ N N’ N N’ N’ N 4 N’ N

Is this a correct (linearizable) linked list?
5&!\’!{&!@{ Tudor David | 11.2016 15

¢

Lock-free Sorted Linked List: Naive — Incorrect
s

P1: find modification spot P1:CAS

PO: Insert(x) —0- find modification spot_ PO:CAS
P1: Delete(y) (U~~~

Lost update!

« What Is the problem?
— Insert involves one existing node;
— Delete involves two existing nodes

How can we fix the problem?
5&!\1@!&“ Tudor David | 11.2016 16

R

e |dea! To delete a node, make it unusable first...

— Mark it for deletion so that
1. You fail marking if someone changes next pointer;
2. Aninsertion fails if the predecessor node is marked.

- In other words: delete in two steps
1. Mark for deletion: and then

2. Physical deletion 2. CAS(remove)

find modification spot 1. CAS(mark)

‘-._/‘-._/\._/_/_/_/_/U

) .

(i Tudor David | 112016 17
ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Delete(y)

o

P1: find modification spot PL:CAS(mark) = false
PO: Insert(x) PO: find modification spot P0:CAS

P1: Delete(y) v—»\\/ﬁv—vvﬂvﬁv—'v—'v*%—'\ U U
J

 Upon failure = restart the operation
— Restarting Is part of “all” state-of-the-art-data structures

) .

(i Tudor David | 112016 18
ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

ailling Insertio

R

P1:CAS(remove)
P1: find modification spot _P1:CAS(mark)

PO: Insert(x) PO: find modification spot PO:CAS - false
P1: Delete(y)

i—bl—b:—bl—b:—bl—bl—b:—b*i—bl—bl—b

 Upon failure = restart the operation
— Restarting Is part of “all” state-of-the-art-data structures

How can we implement marking?
ES!LQF(M Tudor David | 11.2016 19

Implementing Marking (C Sty

R

e Pointers in 64 bit architectures
— Word aligned - 8 bit aligned!

next pointer ‘ 0 ‘ 0 Qo

boolean mark(node_ t* n)
uintptr_t unmarked = n->next & ~Ox1L;
uintptr_t marked = n->next | Ox1L;
return CAS(&n->next, unmarked, marked) == unmarked;

) .

.(I ﬂ- Tudor David | 11.2016 20
ECOLE POLYTECHNIQLIE

FEDERALE DE LAUSAMME

Lock ng Everything Togethe
R 7z

R

 Traversal: traverse (requires unmarking nodes)

e Search: traverse

e Insert: traverse = CAS to insert

e Delete: traverse = CAS to mark - CAS to remove

 Garbage (marked) nodes What happers

— Cleanup while traversing if this CAS
(helping in this course’s terms) fails??

A pragmatic implementation of lock-free linked lists
5&!\1&!@5 Tudor David | 11.2016 21

What is not Perfect with the Lock-free List
s

1. Garbage nodes
— Increase path length; and
— Increase complexity
iIT (1s_marked node(n)) ...
2. Unmarking every single pointer

— Increase complexity
curr = get _unmark ref(curr->next)

Can we simplify the design with locks?
5\(,!\){&!% Tudor David | 11.2016 22

R

find spot return

Search ﬁ
- — Ll — el — — Ll — —

find modification spot lock

Insert

- — el — el — — i

Iockgtarget)

Delete find modification spot lock(predecessor)

s el — el — e — A

Is this a correct (linearizable) linked list?
5&!\1&!@ Tudor David | 11.2016 23

Lock-based List: Validate After Lockin
s
find spot return

L ‘-.__-/ L ‘-._.-/ L ‘-._.-/ ‘-.__-/ L ‘-._.-/ ‘-._.-/ ‘-.__-/ L

Search

validate !pred->marked && pred->next did not change
find modification spot lock

Insert
= mark(curr)
. L Iockgcurr)
Delete find modification spot_lock(predecessor)

1 .‘-‘,_..- N N N

Ipred->marked && !curr->marked && pred->next did not change
Eﬂ’ﬂ!m Tudor David | 11.2016 24

Co

ncurren
A

50

45
?U’l 40
% 35
:30
3 25
=20
S 15
= 10

0

ECOLE POLYTECHNIQLUE
FEDERALE DE LAUSANMNE

E ,|7 - O% Updates 1024 elements

o 0% updates
0

Just because the lock-
based is not unmarking!

Cores

-=|ock-free =—lock-based

(Lesson,) Sequential complexity matters = Simplicity ©

Tudor David | 11.2016

25

Optimistic rrency Control: Summary

R

 Lock-free: atomic operations
&)ptimistic prepare I validate & perform (atomic ops) }

/

failed
— marking pointers, flags, helping, ...

e Lock-based: lock = validate

@timistic preparellock validate performI unlock }

{ unlock

— flags, pointer reversal, parsing twice, ...

) .

(i Tudor David | 112016 26
ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

gd algorithms

R

e Search data structures ©
* Queues, stacks, counters, ... ®

Queue, 40 threads

ho
ol

N

Throughput (Mop/s)

o
ol

W Lock-based m Non-blocking
.(I)ﬂ- Tudor David | 11.2016

Memory Reclamation: OCC'’s Side Effect

R

e Delete a node = free and reuse this memory
 Subset of the garbage collection problem

« \Who Is accessing that memory?
e Can we just directly do fFree(node)?

T e deete) —~ T

>

P1: free(x)

We cannot directly free the memory! Need memory reclamation
5\(,!\){&!% Tudor David | 11.2016 28

emory Reclama
7

R

1. Reference counting
— Count how many references exist on a node

2. Hazard pointers
— Tell to others what exactly you are reading

3. Quiescent states
— Wait until it 1s certain than no one holds references

4. Read-Copy Update (RCU)
— Quiescent states — The extreme approach

) .

(i Tudor David | 112016 29
ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

unting
S

o

rc_pointer

e Pointer + Counter

e Dereference:
rc_dereference(rc_pointer™® rcp)
atomic_increment(&rcp->counter);
return *pointer;

e “Release”.
rc_release(rc_pointer* rcp)
atomic_decrement(&rcp->counter);

e Free: Iff counter =0

(Lesson,) Readers cannot write on the shared nodes

Bad bad bad idea: Readers write on shared nodes!
Y dorowit| s

ard pointers (1/2)

R

 Reference counter = property of the node
« Hazard pointer = property of the thread |
hazard pointer

— A Multi-Reader Single-Writer (MRSW) register -
address

e Protect:
hp protect(node* n)
hazard pointer* hp = hp get(n);
hp->address = n; ’

e Release:
hp release(hazard pointer* hp)
hp->address = NULL;

Depends on
the data

structure type

.(I)ﬂ- Tudor David | 11.2016 31
ECOLE POLYTECHNICQLUE
FEDERALE DE LAUSANNE

ard pointers (2/2)

R

e Free memory X

1. Collect all hazard pointers
hazard_pointer

2. Check If x is accessed by any thread -
address

1. Ifyes, buffer the free for later
2. If not, free the memory

 Buffering the free Is Iimplementation specific

e + |ock-free

e -notscalable
O(data structure size) hazard pointers hp_protect

) .

(i Tudor David | 112006 32
ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

3. Quiescent

R

« Keep the memory until it is certain It IS not accessed
e Can be implemented in various ways

e Example implementation
search /7 iInsert / delete

gs_unsafe() ;—I'm accessing shared data

gs_safe(); I'm not accessing shared data

return

The data written in gs_ [un]safe must be local-mostly
5\(,!\){&!% Tudor David | 11.2016 33

3. Quiescent S. ds_[un]safe Implementa

R

o List of “thread-local” (mostly) counters

(id=0) | (id=x) | (id=y)
gs_state gs_state gs_state

e (s_state (initialized to 0)
— even : in safe mode (not accessing shared data)

— odd : In unsafe mode

e gs _safe / qgs unsafe
gs_state++;

How do we free memory?
Hg.tﬂFw Tudor David | 11.2016 34

3. Quiescent States: Freeing memory

o

o List of “thread-local” (mostly) counters

(id=0) | (id=x) | (id=y)
gs_state gs_state gs_state

e Upon gs_Tree: Timestamp memory (vector_ts)
— Can do this for batches of frees —

for t iIn thread_ids
» Safe to reuse the memory it (vts memlt] is odd &&
vector tsnow >> vector tsmem \:’teiﬁnr%W[fg]l s:e ;vts_mem [t])
return true;

How do the schemes we have seen perform?
Hg.tﬂFw Tudor David | 11.2016 35

Hazard Pointers vs. Quiescent State 1004 olements
s 00/ updates
0
12
—10
(9p)
=
s 8
3 6
-
>
S 4
-
=9
—
+
0
0 5 10 15 20 25 30 35
#Threads

-l-None -A- QSBR -e=HP

Quiescent-state reclamation is as fast as it gets
ES!LQF(M Tudor David | 11.2016 36

4.

R

e Quiescent states at their extreme
— Deletions wait all readers to reach a safe state

e Introduced In the Linux kernel in ~2002
— More than 10000 uses in the kernel!

e (Example) Interface
—rcu_read lock(=gs _unsafe)
—rcu_read unlock (=qgs_safe)
—synchronize rcu - wait all readers

) .

(i Tudor David | 112016 37
ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

R

e Search/ Traverse e Delete

rcu_read_lock() ... physical deletion of x

. synchronize_rcu()
rcu_read_unlock() free(x)

e +simple
* + read-only workloads
e - bad for writes

) .

.(I ﬂ- Tudor David | 11.2016 38
ECOLE POLYTECHNIQLIE

FEDERALE DE LAUSAMME

emory Reclama mmary
7z

R

 How and when to reuse freed memory

e Many technigues, no silver bullet
1. Reference counting
2. Hazard pointers
3. Quiescent states
4. Read-Copy Update (RCU)

) .
(i Tudor David | 112016 39
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

mmary

R

e Concurrent data structures are very important
e Optimistic concurrency necessary for scalability
— Only recently a lot of active work for CDSs

e Memory reclamation is
— Inherent to optimistic concurrency;
— A difficult problem;
— A potential performance/scalability bottleneck

) .

(i Tudor David | 112016 40
ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

	Concurrent Data Structures�Concurrent Algorithms 2016
	Data Structures (DSs)
	Concurrent Data Structures (CDSs)
	What do we care about in practice?
	DS Example: Linked List
	Search Data Structures
	Optimistic vs. Pessimistic Concurrency
	The Two Problems in Optimistic Concurrency
	Tools for Optimistic Concurrency Control (OCC)
	Parenthesis: Target platform
	Concurrent Linked Lists – 5% Updates
	Optimistic Concurrency in Data Structures
	Validation in Concurrent Data Structures
	Let’s design two concurrent linked lists:�	A lock-free and a lock-based��	
	Lock-free Sorted Linked List: Naïve
	Lock-free Sorted Linked List: Naïve – Incorrect
	Lock-free Sorted Linked List: Fix
	1. Failing Deletion (Marking)
	1. Failing Insertion due to Marked Node
	Implementing Marking (C Style)
	Lock-free List: Putting Everything Together
	What is not Perfect with the Lock-free List?
	Lock-based Sorted Linked List: Naïve
	Lock-based List: Validate After Locking
	Concurrent Linked Lists – 0% updates
	Optimistic Concurrency Control: Summary
	Word of caution: lock-based algorithms
	Memory Reclamation: OCC’s Side Effect
	Memory Reclamation Schemes
	1. Reference Counting
	2. Hazard pointers (1/2)
	2. Hazard pointers (2/2)
	3. Quiescent States�
	3. Quiescent States: qs_[un]safe Implementation
	3. Quiescent States: Freeing memory
	Hazard Pointers vs. Quiescent States
	4. Read-Copy Update (RCU)
	4. Using RCU
	Memory Reclamation: Summary
	Summary

