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Data Structures (DSs)

• Constructs for efficiently storing 
and retrieving data

– Different types: lists, hash tables, 
trees, queues, …

• Accessed through the DS interface

– Depends on the DS type, but always 
includes

– Store an element

– Retrieve an element

• Element

– Set: just one value
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Concurrent Data Structures (CDSs)

• Concurrently accessed by multiple 
threads
– Through the CDS interface  linearizable
operations!

• Really important on multi-cores

• Used in most software systems
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What do we care about in practice?

• Progress of individual operations -
sometimes

• More often:

– Number of operations per second 
(throughput)

– The evolution of throughput as we 
increase the number of threads 
(scalability)
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DS Example: Linked List

• A sequence of elements 
(nodes)

• Interface

– search (aka contains)

– insert

– remove (aka delete)

1 2 3 5 6 8

struct node
{
value_t

value;
struct node* 

next;
};

4insert(4)

delete(6)
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Search Data Structures

• Interface

1. search

2. insert

3. remove

• Semantics

1. read-only

2. read-only

3. read-only

4. read-write

k
search(k)

modify(k)parse(k)
update(k)

updatesupdates



Tudor David | 11.2016 7OPTIK

Optimistic vs. Pessimistic Concurrency

(Lesson1) Optimistic concurrency is the only way to 
get scalability

20-core Xeon
1024 
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The Two Problems in Optimistic Concurrency

• Concurrency 
Control
How threads 
synchronize their 
writes to the shared 
memory (e.g., nodes)

– Locks

– CAS

– Transactional 
memory

• Memory 
Reclamation
How and when threads 
free and reuse the 
shared memory (e.g., 
nodes)

– Garbage collectors

– Hazard pointers

– RCU

– Quiescent states
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Tools for Optimistic Concurrency Control (OCC)

• RCU: slow in the presence of updates

– (also a memory reclamation scheme)

• STM: slow in general

• HTM: not ubiquitous, not very fast 
(yet)

• Wait-free algorithms: slow in general

• (Optimistic) Lock-free algorithms: 

• Optimistic lock-based algorithms: 
We either need a lock-free or an optimistic lock-

based algorithm
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Parenthesis: Target platform

2-socket Intel Xeon E5-2680 v2 Ivy 
Bridge

– 20 cores @ 2.8 GHz, 40 hyper-threads

– 25 MB LLC (per socket)

– 256GB RAM

c c cc

c c cc

c c

c c cc

c c cc

c c
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Concurrent Linked Lists – 5% Updates

Wait-free algorithm is slow 

1024 
elements
5% updates
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Optimistic Concurrency in Data Structures

Validation plays a key role in concurrent data 
structures

operation

optimistic prepare
(non-synchronized)

perform
(synchronized)

Pattern

validate

zed)

validate
(synchroni

zed)

optimistic 
prepare

perform

failed

find insertion spotvalidate

insert

Example
linked 
list
insert

detect conflicting 
concurrent operations
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Validation in Concurrent Data Structures

• Lock-free: atomic operations

– marking pointers, flags, helping, …

• Lock-based: lock  validate

– flags, pointer reversal, parsing twice, 
…Validation is what differentiates algorithms

validate & perform (atomic 
ops)

validate & perform (atomic 
ops)prepare

optimistic 
prepare

failed

k
loc
kprepare

optimistic 
prepare m

perfor
m

unlock
ate
valid
ate

unlock
failed
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Let’s design two concurrent linked lists:
A lock-free and a lock-based



Tudor David | 11.2016 15OPTIK

Lock-free Sorted Linked List: Naïve 

Is this a correct (linearizable) linked list?

find modification spotCASInsert

find modification spotCASDelete

find spot returnSearch
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Lock-free Sorted Linked List: Naïve – Incorrect 

• What is the problem?

– Insert involves one existing node;

– Delete involves two existing nodes

How can we fix the problem?

P0: find modification spotP0:CAS

xx

yy
P0: 
Insert(x)
P1: 
Delete(y)

P1: find modification spotP1:CAS

Lost 
update!
Lost 

update!
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Lock-free Sorted Linked List: Fix

• Idea! To delete a node, make it 
unusable first… 

– Mark it for deletion so that
1. You fail marking if someone changes next

pointer;

2. An insertion fails if the predecessor node 
is marked.

In other words: delete in two steps

1. Mark for deletion; and then

2. Physical deletion yy
Delete(y) find modification spot1. CAS(mark)

2. CAS(remove)
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1. Failing Deletion (Marking)

• Upon failure  restart the operation 

– Restarting is part of “all” state-of-
the-art-data structures

P0: find modification spotP0:CAS

xx

yy
P0: 
Insert(x)
P1: 
Delete(y)

P1: find modification spotP1:CAS(mark)  fa
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1. Failing Insertion due to Marked Node

• Upon failure  restart the operation 

– Restarting is part of “all” state-of-
the-art-data structures

How can we implement marking?

P0: find modification spotP0:CAS  false

yy
P0: 
Insert(x)
P1: 
Delete(y)

P1: find modification spotP1:CAS(mark)
P1:CAS(remove)
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Implementing Marking (C Style)

• Pointers in 64 bit architectures

– Word aligned - 8 bit aligned! 

next pointer 000

boolean mark(node_t* n)
uintptr_t unmarked = n->next & ~0x1L;
uintptr_t marked   = n->next | 0x1L;
return CAS(&n->next, unmarked, marked) == unmarked;
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Lock-free List: Putting Everything Together

• Traversal: traverse (requires 
unmarking nodes)

• Search: traverse

• Insert: traverse  CAS to insert

• Delete: traverse  CAS to mark 
CAS to remove

• Garbage (marked) nodes

– Cleanup while traversing
(helping in this course’s terms)

A pragmatic implementation of lock-free linked lists

What 

fails??

What 
happers if 
this CAS 
fails??
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What is not Perfect with the Lock-free List?

1. Garbage nodes

– Increase path length; and

– Increase complexity 
if (is_marked_node(n)) …

2. Unmarking every single pointer

– Increase complexity
curr = get_unmark_ref(curr->next)

Can we simplify the design with locks?
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Lock-based Sorted Linked List: Naïve 

Is this a correct (linearizable) linked list?

find modification spotlockInsert

find modification spotlock(predecessor)Delete

find spot returnSearch

lock(target)
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Lock-based List: Validate After Locking

find modification spotlockInsert

find modification spotlock(predecessor)Delete

find spot returnSearch

lock(curr)

validate !pred->marked && pred->next did 
not change

!pred->marked && !curr->marked && pred->next did 
not change

mark(curr)
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Concurrent Linked Lists – 0% updates

(Lesson2) Sequential complexity matters  Simplicity 

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Optimistic Concurrency Control: Summary

• Lock-free: atomic operations

– marking pointers, flags, helping, …

• Lock-based: lock  validate

– flags, pointer reversal, parsing twice, 
…

validate & perform (atomic 
ops)

validate & perform (atomic 
ops)prepare

optimistic 
prepare

failed

k
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kprepare

optimistic 
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failed



Tudor David | 11.2016 27CA

Word of caution: lock-based algorithms

• Search data structures   
• Queues, stacks, counters, ... 
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Memory Reclamation: OCC’s Side Effect

• Delete a node  free and reuse this 
memory

• Subset of the garbage collection 
problem

• Who is accessing that memory?

• Can we just directly do free(node)?

We cannot directly free the memory! Need memory 
reclamation

xx

P0: 
search

P1: 
delete(x)

P1: free(x)

P0: pointer 
on x
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Memory Reclamation Schemes

1. Reference counting

– Count how many references exist on a node

2. Hazard pointers

– Tell to others what exactly you are 
reading

3. Quiescent states

– Wait until it is certain than no one 
holds references

4. Read-Copy Update (RCU)

– Quiescent states – The extreme approach
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1. Reference Counting

• Pointer + Counter

• Dereference: 
rc_dereference(rc_pointer* rcp)

atomic_increment(&rcp->counter);
return *pointer;

• “Release”:
rc_release(rc_pointer* rcp)

atomic_decrement(&rcp->counter);

• Free: iff counter = 0

Bad bad bad idea: Readers write on shared nodes!

i t
r

pointe
r

t
r

counte
r

rc_pointer

(Lesson3) Readers cannot write on the shared nodes
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2. Hazard pointers (1/2)

• Reference counter  property of the 
node

• Hazard pointer  property of the 
thread

– A Multi-Reader Single-Writer (MRSW) 
register

• Protect: 
hp_protect(node* n)

hazard_pointer* hp = hp_get(n);
hp->address = n;

• Release: 
hp_release(hazard_pointer* hp)

dd
s

addres
s

hazard_pointe

Depends on Depends on 
the data 
structure 

type
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2. Hazard pointers (2/2)

• Free memory x

1. Collect all hazard pointers

2. Check if x is accessed by any thread

1. If yes, buffer the free for later

2. If not, free the memory

• Buffering the free is implementation 
specific

• + lock-free 

• - not scalable

dd
s

addres
s

hazard_pointe

O(data structure size) hazard pointers hp_protect
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3. Quiescent States

• Keep the memory until it is certain 
it is not accessed

• Can be implemented in various ways

• Example implementation 
search / insert / delete
qs_unsafe(); I’m accessing shared 
data
…
qs_safe(); I’m not accessing 
shared data
return …The data written in qs_[un]safe must be local-

mostly
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3. Quiescent States: qs_[un]safe Implementation

• List of “thread-local” (mostly) 
counters

• qs_state (initialized to 0)

– even : in safe mode (not accessing shared 
data)

– odd : in unsafe mode

• qs_safe / qs_unsafe
qs_state++;How do we free memory?

(id = 
0)

qs_state

(id = 
x)

qs_state

(id = 
y)

qs_state
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3. Quiescent States: Freeing memory

• List of “thread-local” (mostly) 
counters

• Upon qs_free: Timestamp memory 
(vector_ts)

– Can do this for batches of frees

• Safe to reuse the memory
vector_tsnow >> vector_tsmem

How do the schemes we have seen perform?

(id = 
0)

qs_state

(id = 
x)

qs_state

(id = 
y)

qs_state

for t in thread_ids
if (vts_mem[t] is odd &&
vts_now[t] = vts_mem[t])
return false;

return true;
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Hazard Pointers vs. Quiescent States

Quiescent-state reclamation is as fast as it gets

1024 
elements
0% updates
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4. Read-Copy Update (RCU)

• Quiescent states at their extreme

– Deletions wait all readers to reach a 
safe state

• Introduced in the Linux kernel in 
~2002

– More than 10000 uses in the kernel!

• (Example) Interface
– rcu_read_lock (= qs_unsafe)
– rcu_read_unlock (= qs_safe)
– synchronize_rcu  wait all readers
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4. Using RCU

• Search / Traverse
rcu_read_lock()
…  
rcu_read_unlock()

• + simple

• + read-only 
workloads

• - bad for writes

• Delete
… physical 
deletion of x
synchronize_rcu()
free(x)



Tudor David | 11.2016 39OPTIK

Memory Reclamation: Summary

• How and when to reuse freed memory

• Many techniques, no silver bullet

1. Reference counting

2. Hazard pointers

3. Quiescent states

4. Read-Copy Update (RCU)
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Summary

• Concurrent data structures are very 
important

• Optimistic concurrency necessary for 
scalability

– Only recently a lot of active work for CDSs

• Memory reclamation is

– Inherent to optimistic concurrency;

– A difficult problem;

– A potential performance/scalability 
bottleneck


