
Tudor David | 11.2016 1

Concurrent Data Structures
Concurrent Algorithms 2016

Tudor David

(based on slides by Vasileios Trigonakis)

Tudor David | 11.2016 2CA

Data Structures (DSs)

• Constructs for efficiently storing
and retrieving data

– Different types: lists, hash tables,
trees, queues, …

• Accessed through the DS interface

– Depends on the DS type, but always
includes

– Store an element

– Retrieve an element

• Element

– Set: just one value

Tudor David | 11.2016 3ASCY

Concurrent Data Structures (CDSs)

• Concurrently accessed by multiple
threads
– Through the CDS interface  linearizable
operations!

• Really important on multi-cores

• Used in most software systems

Tudor David | 11.2016 4CA

What do we care about in practice?

• Progress of individual operations -
sometimes

• More often:

– Number of operations per second
(throughput)

– The evolution of throughput as we
increase the number of threads
(scalability)

0

5

10

15

1 10 20 30 40

Th
ro
ug
hp
ut

(M
op
/s
)

Threads

Tudor David | 11.2016 5CA

DS Example: Linked List

• A sequence of elements
(nodes)

• Interface

– search (aka contains)

– insert

– remove (aka delete)

1 2 3 5 6 8

struct node
{
value_t

value;
struct node*

next;
};

4insert(4)

delete(6)

Tudor David | 11.2016 6CA

Search Data Structures

• Interface

1. search

2. insert

3. remove

• Semantics

1. read-only

2. read-only

3. read-only

4. read-write

k
search(k)

modify(k)parse(k)
update(k)

updatesupdates

Tudor David | 11.2016 7OPTIK

Optimistic vs. Pessimistic Concurrency

(Lesson1) Optimistic concurrency is the only way to
get scalability

20-core Xeon
1024
elements

0

2

4

6

8

10

12

1 10 20 30 40

Th
ro
ug
hp
ut
 (
Mo
p/
s)

Cores

"bad" linked list "good" linked list

pessimistic

traverse

traverse

Tudor David | 11.2016 8OPTIK

The Two Problems in Optimistic Concurrency

• Concurrency
Control
How threads
synchronize their
writes to the shared
memory (e.g., nodes)

– Locks

– CAS

– Transactional
memory

• Memory
Reclamation
How and when threads
free and reuse the
shared memory (e.g.,
nodes)

– Garbage collectors

– Hazard pointers

– RCU

– Quiescent states

Tudor David | 11.2016 9OPTIK

Tools for Optimistic Concurrency Control (OCC)

• RCU: slow in the presence of updates

– (also a memory reclamation scheme)

• STM: slow in general

• HTM: not ubiquitous, not very fast
(yet)

• Wait-free algorithms: slow in general

• (Optimistic) Lock-free algorithms: 

• Optimistic lock-based algorithms: 
We either need a lock-free or an optimistic lock-

based algorithm

Tudor David | 11.2016 10CA

Parenthesis: Target platform

2-socket Intel Xeon E5-2680 v2 Ivy
Bridge

– 20 cores @ 2.8 GHz, 40 hyper-threads

– 25 MB LLC (per socket)

– 256GB RAM

c c cc

c c cc

c c

c c cc

c c cc

c c

Tudor David | 11.2016 11OPTIK

Concurrent Linked Lists – 5% Updates

Wait-free algorithm is slow 

1024
elements
5% updates

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37

Th
ro

ug
hp

ut
 (
Mo

ps
/s

)

Number of threads

Blocking Lock-free Wait-free

Tudor David | 11.2016 12OPTIK

Optimistic Concurrency in Data Structures

Validation plays a key role in concurrent data
structures

operation

optimistic prepare
(non-synchronized)

perform
(synchronized)

Pattern

validate

zed)

validate
(synchroni

zed)

optimistic
prepare

perform

failed

find insertion spotvalidate

insert

Example
linked
list
insert

detect conflicting
concurrent operations

Tudor David | 11.2016 13OPTIK

Validation in Concurrent Data Structures

• Lock-free: atomic operations

– marking pointers, flags, helping, …

• Lock-based: lock  validate

– flags, pointer reversal, parsing twice,
…Validation is what differentiates algorithms

validate & perform (atomic
ops)

validate & perform (atomic
ops)prepare

optimistic
prepare

failed

k
loc
kprepare

optimistic
prepare m

perfor
m

unlock
ate
valid
ate

unlock
failed

Tudor David | 11.2016 14

Let’s design two concurrent linked lists:
A lock-free and a lock-based

Tudor David | 11.2016 15OPTIK

Lock-free Sorted Linked List: Naïve

Is this a correct (linearizable) linked list?

find modification spotCASInsert

find modification spotCASDelete

find spot returnSearch

Tudor David | 11.2016 16OPTIK

Lock-free Sorted Linked List: Naïve – Incorrect

• What is the problem?

– Insert involves one existing node;

– Delete involves two existing nodes

How can we fix the problem?

P0: find modification spotP0:CAS

xx

yy
P0:
Insert(x)
P1:
Delete(y)

P1: find modification spotP1:CAS

Lost
update!
Lost

update!

Tudor David | 11.2016 17OPTIK

Lock-free Sorted Linked List: Fix

• Idea! To delete a node, make it
unusable first…

– Mark it for deletion so that
1. You fail marking if someone changes next

pointer;

2. An insertion fails if the predecessor node
is marked.

In other words: delete in two steps

1. Mark for deletion; and then

2. Physical deletion yy
Delete(y) find modification spot1. CAS(mark)

2. CAS(remove)

Tudor David | 11.2016 18OPTIK

1. Failing Deletion (Marking)

• Upon failure  restart the operation

– Restarting is part of “all” state-of-
the-art-data structures

P0: find modification spotP0:CAS

xx

yy
P0:
Insert(x)
P1:
Delete(y)

P1: find modification spotP1:CAS(mark)  fa

Tudor David | 11.2016 19OPTIK

1. Failing Insertion due to Marked Node

• Upon failure  restart the operation

– Restarting is part of “all” state-of-
the-art-data structures

How can we implement marking?

P0: find modification spotP0:CAS  false

yy
P0:
Insert(x)
P1:
Delete(y)

P1: find modification spotP1:CAS(mark)
P1:CAS(remove)

Tudor David | 11.2016 20OPTIK

Implementing Marking (C Style)

• Pointers in 64 bit architectures

– Word aligned - 8 bit aligned!

next pointer 000

boolean mark(node_t* n)
uintptr_t unmarked = n->next & ~0x1L;
uintptr_t marked = n->next | 0x1L;
return CAS(&n->next, unmarked, marked) == unmarked;

Tudor David | 11.2016 21OPTIK

Lock-free List: Putting Everything Together

• Traversal: traverse (requires
unmarking nodes)

• Search: traverse

• Insert: traverse  CAS to insert

• Delete: traverse  CAS to mark 
CAS to remove

• Garbage (marked) nodes

– Cleanup while traversing
(helping in this course’s terms)

A pragmatic implementation of lock-free linked lists

What

fails??

What
happers if
this CAS
fails??

Tudor David | 11.2016 22OPTIK

What is not Perfect with the Lock-free List?

1. Garbage nodes

– Increase path length; and

– Increase complexity
if (is_marked_node(n)) …

2. Unmarking every single pointer

– Increase complexity
curr = get_unmark_ref(curr->next)

Can we simplify the design with locks?

Tudor David | 11.2016 23OPTIK

Lock-based Sorted Linked List: Naïve

Is this a correct (linearizable) linked list?

find modification spotlockInsert

find modification spotlock(predecessor)Delete

find spot returnSearch

lock(target)

Tudor David | 11.2016 24OPTIK

Lock-based List: Validate After Locking

find modification spotlockInsert

find modification spotlock(predecessor)Delete

find spot returnSearch

lock(curr)

validate !pred->marked && pred->next did
not change

!pred->marked && !curr->marked && pred->next did
not change

mark(curr)

Tudor David | 11.2016 25OPTIK

Concurrent Linked Lists – 0% updates

(Lesson2) Sequential complexity matters  Simplicity


0
5
10
15
20
25
30
35
40
45
50

1 10 20 30 40

Th
ro
ug
hp
ut
 (
Mo
p/
s)

Cores

lock-free lock-based

1024
elements
0% updates

Just because the
lock-based is not

unmarking!

Tudor David | 11.2016 26OPTIK

Optimistic Concurrency Control: Summary

• Lock-free: atomic operations

– marking pointers, flags, helping, …

• Lock-based: lock  validate

– flags, pointer reversal, parsing twice,
…

validate & perform (atomic
ops)

validate & perform (atomic
ops)prepare

optimistic
prepare

failed

k
loc
kprepare

optimistic
prepare m

perfor
m

unlock
ate
valid
ate

unlock
failed

Tudor David | 11.2016 27CA

Word of caution: lock-based algorithms

• Search data structures 
• Queues, stacks, counters, ... 

0

0.5

1

1.5

2

2.5

3

Th
ro

ug
hp

ut
 (
Mo

p/
s)

Queue, 40 threads

Lock-based Non-blocking

Tudor David | 11.2016 28OPTIK

Memory Reclamation: OCC’s Side Effect

• Delete a node  free and reuse this
memory

• Subset of the garbage collection
problem

• Who is accessing that memory?

• Can we just directly do free(node)?

We cannot directly free the memory! Need memory
reclamation

xx

P0:
search

P1:
delete(x)

P1: free(x)

P0: pointer
on x

Tudor David | 11.2016 29OPTIK

Memory Reclamation Schemes

1. Reference counting

– Count how many references exist on a node

2. Hazard pointers

– Tell to others what exactly you are
reading

3. Quiescent states

– Wait until it is certain than no one
holds references

4. Read-Copy Update (RCU)

– Quiescent states – The extreme approach

Tudor David | 11.2016 30OPTIK

1. Reference Counting

• Pointer + Counter

• Dereference:
rc_dereference(rc_pointer* rcp)

atomic_increment(&rcp->counter);
return *pointer;

• “Release”:
rc_release(rc_pointer* rcp)

atomic_decrement(&rcp->counter);

• Free: iff counter = 0

Bad bad bad idea: Readers write on shared nodes!

i t
r

pointe
r

t
r

counte
r

rc_pointer

(Lesson3) Readers cannot write on the shared nodes

Tudor David | 11.2016 31OPTIK

2. Hazard pointers (1/2)

• Reference counter  property of the
node

• Hazard pointer  property of the
thread

– A Multi-Reader Single-Writer (MRSW)
register

• Protect:
hp_protect(node* n)

hazard_pointer* hp = hp_get(n);
hp->address = n;

• Release:
hp_release(hazard_pointer* hp)

dd
s

addres
s

hazard_pointe

Depends on Depends on
the data
structure

type

Tudor David | 11.2016 32OPTIK

2. Hazard pointers (2/2)

• Free memory x

1. Collect all hazard pointers

2. Check if x is accessed by any thread

1. If yes, buffer the free for later

2. If not, free the memory

• Buffering the free is implementation
specific

• + lock-free

• - not scalable

dd
s

addres
s

hazard_pointe

O(data structure size) hazard pointers hp_protect

Tudor David | 11.2016 33OPTIK

3. Quiescent States

• Keep the memory until it is certain
it is not accessed

• Can be implemented in various ways

• Example implementation
search / insert / delete
qs_unsafe(); I’m accessing shared
data
…
qs_safe(); I’m not accessing
shared data
return …The data written in qs_[un]safe must be local-

mostly

Tudor David | 11.2016 34OPTIK

3. Quiescent States: qs_[un]safe Implementation

• List of “thread-local” (mostly)
counters

• qs_state (initialized to 0)

– even : in safe mode (not accessing shared
data)

– odd : in unsafe mode

• qs_safe / qs_unsafe
qs_state++;How do we free memory?

(id =
0)

qs_state

(id =
x)

qs_state

(id =
y)

qs_state

Tudor David | 11.2016 35OPTIK

3. Quiescent States: Freeing memory

• List of “thread-local” (mostly)
counters

• Upon qs_free: Timestamp memory
(vector_ts)

– Can do this for batches of frees

• Safe to reuse the memory
vector_tsnow >> vector_tsmem

How do the schemes we have seen perform?

(id =
0)

qs_state

(id =
x)

qs_state

(id =
y)

qs_state

for t in thread_ids
if (vts_mem[t] is odd &&
vts_now[t] = vts_mem[t])
return false;

return true;

Tudor David | 11.2016 36ASCY

Hazard Pointers vs. Quiescent States

Quiescent-state reclamation is as fast as it gets

1024
elements
0% updates

0

2

4

6

8

10

12

0 10 20 30 40

Th
ro

ug
hp

ut
 (
Mo

p/
s)

#Threads

None QSBR HP

Tudor David | 11.2016 37OPTIK

4. Read-Copy Update (RCU)

• Quiescent states at their extreme

– Deletions wait all readers to reach a
safe state

• Introduced in the Linux kernel in
~2002

– More than 10000 uses in the kernel!

• (Example) Interface
– rcu_read_lock (= qs_unsafe)
– rcu_read_unlock (= qs_safe)
– synchronize_rcu  wait all readers

Tudor David | 11.2016 38OPTIK

4. Using RCU

• Search / Traverse
rcu_read_lock()
…
rcu_read_unlock()

• + simple

• + read-only
workloads

• - bad for writes

• Delete
… physical
deletion of x
synchronize_rcu()
free(x)

Tudor David | 11.2016 39OPTIK

Memory Reclamation: Summary

• How and when to reuse freed memory

• Many techniques, no silver bullet

1. Reference counting

2. Hazard pointers

3. Quiescent states

4. Read-Copy Update (RCU)

Tudor David | 11.2016 40OPTIK

Summary

• Concurrent data structures are very
important

• Optimistic concurrency necessary for
scalability

– Only recently a lot of active work for CDSs

• Memory reclamation is

– Inherent to optimistic concurrency;

– A difficult problem;

– A potential performance/scalability
bottleneck

