ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Concurrent Data Structures
Concurrent Algorithms 2016

Tudor David

(based on slides by Vasileios Trigonakis)

Tudor David | 11.2016 |

Data Structures (DSs)

A,

e Constructs for efficiently storing
and retrieving data

—Different types: lists, hash tables,
trees, queues,

e Accessed through the DS interface

— Depends on the DS type, but always
includes

— Store an element

— Retrieve an element

e Element

MW — Set: just one value Tudor Dartd | 11,2016

conc ures (CDSs)

A i,

e Concurrently accessed by multiple
threads

— Through the CDS interface = linearizable
operations!

e Really importantﬁégfmg}ti—cores
HILInUXA) ¢ pir) o
LEVELDB . mOIlgODB

.(Pﬂ. Tudor David | 11.2016
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

What do we care about in practice?

A i,

e Progress of individual operations -
sometimes

e More often:
— Number of operations per second
(throughput)

—-The+ev Tution of throughput as we
1nc§£a&@ the number of threads

(SC%@&bllltY)

| 10 20 30 40

Threads
.(Pﬂ. Tudor David | 11.2016 |
FEDARALL D LADSAMNE

A A i,

delete (6) - :

l /™ 2~ 3 ™ 5 ™ 6 ™ 8

(,a_/”‘*—’&:“/ ,} ~—
insert (4) 4

e A sequence of elements ?tﬂmtfmde
(HOdGS) value t
 Interface value;
h (K .) struct node*
— Searc akad contalns next :
— insert b

Tudor David | 11.2016

)
W _ cmove (aka delete)

Search Da

A,

e Interface search (k)
4
1. search l
: upddte (k)
2. 1nsert !
updates /
8. remove 1
e Semantics N
/
l. read—onky—=~ -
read-onk---""" .

read—onkH—=—"""

read-write =~ "~

=

.(Pﬂ. Tudor David | 11.2016
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Optimistic vs. Pessimistic Concurrency

20—Ccore Xeon

—
DO

—
-

traverse

co

Throughput (Mop/s)

—etemetrtts———

4 traverse
NI
2 O~ O~ 0~ O .. .
~NYT N Y pessimistic
O eGP G EP ED ED D MR, L .. o es G> ED ED GD GO GO GO ED GED ED @D GO @b B @ @B @ @
1 10 20 30
Cores

-="bad” linked list ="good” linked 1i

St

(Lesson;) Optimistic concurrency is the only way to

- (| get scalability

Tudor David | 11.2016

The s In Optimistic Concurrency

A i,

e Concurrency e Memory

Control Reclamation
How threads How and when threads
synchronize their free and reuse the
writes to the shared shared memory (e. g.,
memory (e.g., nodes) nodes)
— Locks — Garbage collectors
— CAS — Hazard pointers
— Transactional — RCU

memory — Quiescent states

.(Pﬂ. Tudor David | 11.2016 8
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Tools for Optimistic Concurrency Control (OCC)

A i,

e RCU: slow in the presence of updates

— (also a memory reclamation scheme)
e STM: slow in general

e HTM: not ubiquitous, not very fast
(yet)

Wait—free algorithms: slow [n general
(Optimistic) Lock—-free algorithms: ©

1 7~ 2\
We either need a lock—free or an optimistic lock—
.(Pﬂ. baS e d al g0or 1 thm Tudor David | 11.2016 9

Parenthesis: Target platform

A,

2—socket Intel Xeon E5-2680 v2 Ivy
Bridge
— 20 cores @ 2.8 GHz, 40 hyper—threads
—25 MB LLC (per socket)
— 256GB RAM

.(Pﬂ. Tudor David | 11.2016 10
ECHNIQUE

ECOLE POLYTECH
FEDERA LAUSA!

ConcurrentLlnked Llsts 5% Updates 1022
i i el ements
—Sh—updates——
—Blocking —Lock—-free —Wait—free
12 -
~10 1
3

o
|

\)

Throughput (Mop
o

-)

1 5 9 13 17 21 25 29 33 37
Number of threads

Wait—free algorithm is slow ®
IKWHI

D RALL DL LAUS

Tudor David | 11.2016

11

Optimisti

A

rrency in Data Str

operation
Pattern ’ optimistic prepare perform A
. (non—synchronized) (synchronized)
s ST vartdate N
optimistic :
synchroni perform
. prepare -
—
failed detect conflicting
concurrent operations
Example find insertion spotalidate
linked — = = = = = = I . — =
list . X; J
insert lnser

Validation plays a key role in concurrent data

(i

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

structures

Tudor David | 11.2016

A,

12

Validat

A,

e Lock—free: atomic operations
(ﬂ;<xﬂjnﬁstic }ivalidate & perform (atomic]

e
failed

—marking pointers, flags, helping,
e Lock—based: lock = validate
optimistic valid perfor]iunlock}

ITr

prepare
| g v

— flags, pointer reversal, parsing twice,

Validation is what differentiates algorithms
.(Pﬂ. Tudor David | 11.2016

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Let’'s design two concurrent linked lists:
A lock-free and a lock-based

Tudor David | 11.2016 14

Lock-free S

A,

Search find spot return
Tnsert find modification
Delete find modification

Is this a correct (linearizable) linked 1list?
.(mel!m Tudor David | 11.2016 15

ECOLE POLYTECH
FEDERA LAUSA!

Lock-free S — Incorrec

A,

Pl: find modificatioﬁ{é§6§
PO - PO: find modificatio@Qs@@B

Insert (x) (= = = = = = = ={y={ = = —~
P1:
Delete (y)

e What is the problem?

— Insert involves one existing node;

—Delete involves two existing nodes

How can we fix the problem?
.(Pﬂ. Tudor David | 11.2016 16

A,

e [dea! To delete a node, make it
unusable firste-:

—Mark it for deletion so that

1. You fail marking if someone changes next
pointer;

2. An insertion fails if the predecessor node
is marked.

= In other words: delete in two eA®O®move)
peilyMark for fleld withisf and itdrenspdy CAS (mark)
2. Phys & < = = -~ = -~ ~ (O s
*

.(Pﬂ. Tudor David | 11.2016
FEDARALL D LADSAMNE

1. Failing Deletion (Marking)

A,

P1: find modificatioRlspdd (mark) > f

PO - PO: find modificatioR(QsiAb
Insert (x) VAT WA WA W) WA WA IR WA WA WA W
P1: i]

Delete (y) X

e Upon failure =2 restart the operation

—Restarting is part of “all” state—of-
the—art—data structures

.(Pﬂ. Tudor David | 11.2016 18
FEDARALL D LADSAMNE

1. Failing Insertlon due to Marked Node

A A A A,

Pl CAS(remove)
Pl: find modificatioﬁ{éﬁdﬁ(mafk>

PO - PO: find modifieatioﬁgs@ds > false
Insert (x) et =

P1:

Delete (y)

e Upon failure =2 restart the operation

— Restarting is part of “all” state—of-
the—art—data structures

How can we implement marking?
.(Pﬂ. Tudor David | 11.2016 19

Implementing Marking (C Sty

A i,

e Pointers in 64 bit architectures
—Word aligned — 8 bit aligned!

next pointer ‘O‘ 0

boolean mark(node t* n)
uintptr_t unmarked = n->next & ~Ox1L;
uintptr_t marked = n->next | Ox1L;
return CAS(&n->next, unmarked, marked) == unmarked;

.(Pﬂ. Tudor David | 11.2016 20
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Lock-free List: Putting Everything Together

A i,

e Traversal: traverse (requires
unmarking nodes)

e Search: traverse

e Insert: traverse = CAS to insert

e Delete: traverse = CAS to ma&(-
CAS to remove What

happers 1if

this CAS
e Garbage (marked) nodes ,
. L . fails??

A pragmatic implementation of lock—free linked lists
\//€Lp171 LI LIILS Course S Lerus)

.(Pﬂ. Tudor David | 11.2016 21
FEDARALL D LADSAMNE

What is not Perfect with the Lock-free List?
B)
1. Garbage nodes
— Increase path length; and
— Increase complexity
iIT (1s_marked _node(n)) --
2. Unmarking every single pointer

— Increase complexity
curr = get _unmark ref(curr->next)

Can we simplify the design with locks?
.(Pﬂ. Tudor David | 11.2016 22

Lock based Sorted Llnked Llst Nalve

P e e e
flnd Spot return
Search D
— — — —> — — — — — —

find modificationﬁﬁpﬁi

Insert
lock (target)
Delete find modlflcatlon_k@gﬁ(predecessor)

Is this a correct (linearizable) linked 1list?
.(Pﬂ. Tudor David | 11.2016 23

A,

Search find spot return

e = e —

validate !pred—>marked && pred—->next did
not changéind modification lpekt

e e e e S S S —I@—P — = =

mark (curr)
lock (curr)

Insert

Delete find modificaiifnlk@mk(predecessor)

'pred—>marked && !curr—>marked && pred—>next did
5@!@_@ Change Tudor David | 11.2016 24

con t

current L d
e i

Inked L — 0% updates [z
S

il o l ement s

50
~ 45 Just because the

n

?340 lock-based is not
=0 unmarking!
=~ 30 g-
525
=20

1 10 20 30 40
Cores

== ock—free =]ock—based

(Lesson,) Sequential complexity matters = Simplicity
.(Pﬂ. @ Tudor David | 11.2016 25

Optimistic C rrency Control: Summary

A A A,

e Lock—free: atomic operations
(ﬂ;<xﬂjnﬁstic }ivalidate & perform (atomic]

e
failed

—marking pointers, flags, helping, --
e [Lock—based: lock = wvalidate
optimistic valid perfor]ﬁnnlock]

ITr

prepare
| g v

.

— flags, pointer reversal, parsing twice,

.(Pﬂ. Tudor David | 11.2016 26
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

) ed algorithm

A A A,

e Search data structures ©
e Queues, stacks, counters, ... ®

Queue, 40 threads

[\
O1

N}

—_

Throughput (Mop/s)

B[ock-based ®Non-blocking
.(Pﬂ. Tudor David | 11.2016

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Memory Reclamation: OCC'’s Side Effect

A,

e Delete a node = free and reuse this
memory

e Subset of the garbage collection
problem

e Who 1s accessing MpHOLHInter

e Can XfFree(node)?

P1:
delete (x)

Pl: free(x)

We cannot directly free the memory! Need memory
.(Pﬂ. rec 1 amati on Tudor David | 11.2016 28

Memory Reclamation Schem

A i,

1. Reference counting

— Count how many references exist on a node

2. Hazard pointers

—Tell to others what exactly you are
reading

3. Quiescent states

—Wait until 1t i1s certain than no one
holds references

4. Read—Copy Update (RCU)

—Quiescent states - The extreme approach
!mg!lfclw! Tudor David | 11.2016 29

1. Referen unting

A i,

rc_pointer

P ol ter U

e Dereference:
rc_dereference(rc_pointer®* rcp)
atomic_increment(&rcp->counter);
return *pointer;

e “Release”
rc_release(rc_pointer* rcp)
atomic_decrement(&rcp->counter);

e Free: 1ff counter = 0

(Lesson;) Readers cannot write on the shared nodes

Bad bad bad idea: Readers write on shared nodes!
.(Pﬂ. Tudor David | 11.2016 30

2. Hazard pointe

A A,

e Reference counter = property of the

node
hazard pointe

e Hazard pointer = property of the
thread)

— A Multi-Reader Single-Writer (MRSW)
register

‘@
e Protect: @ Depends on
hp_protect(node* n) the data
hazard_pointer* hp = hp_get((EEEREEEIEC
hp->address = n; type
e Release:

H(Whp release(hazard pointer* hp) Tudor David | 112006 9

FEDERALE DE LAUSANNE

2. Hazard pointers (2/2)

A A,

e Free memory X
l. Collect all hazard pointers
2. Check if x i1s accessed by any thr@%me
1. If yes, buffer the free for later .
2. If not, free the memory

e Buffering the free is implementation
specific

e + lock—free
O(data structure size) hazard pointers hp_ protect

.(Pﬂ. Tudor David | 11.2016 32
FEDARALL D LADSAMNE

3. Quiescent Sta

A,

e Keep the memory until it is certain
1t 1s not accessed

e Can be implemented in various ways

e Example implementation
search 7/ 1nsert / delete
gs_unsafe(); [” m accessing shared
data

gs_safe(); [’ m not accessing

shared data

The data written in gs_Jun]safe must be local-
(Y mostly Tudor David | 11201

3. Quiescent States: gds_[un]safe Implementation

A i,

e List of “thread-local” (mostly)

(54 (4= (3 d =

C Ira— Ia— (1a—
0) 1 X) oY)
qsS_state gqsS_state qsS_state

e qs state (initialized to 0)
—even : in safe mode (not accessing shared
data)
—odd : in unsafe mode
e gs _safe / qgs unsafe

How do we free memory?
.(Pﬂ. Tudor David | 11.2016 34

3. Quiescent States: Freeing memory

A i,

e List of “thread-local” (mostly)

(i d — (id—= Gd—=
C \14u \IU (g LV
0) " X))
gs State gs State gs _State

e Upon gs_free: Timestamp memory

for t 1n thread ids
(vector_ts) if (vts_mem[t] is odd &&

—Can do this for batcheSyof VEgdw¥lt]l = vts_mem[t])

return false;
e Safe to reuse the memoryeturn true;

vector ts >> vector ts
How do the schemes we have seen perform?

.(Pﬂ. Tudor David | 11.2016
FEDARALL D LADSAMNE

Hazard Pointers vs. Quiescent States [0z
o s elemen‘ts
Of—updates——

12
© 10
o
= 8
5 6
(@F
&
20 4
o
= 2
= .

+
0
0 10 20 30 40
#Threads
<-None =A-(QSBR -€=HP
Quiescent—state reclamation is as fast as it gets

ECOLE POLYTECHNIQUE

L H
FEDERALE DE LAUSANNE

Tudor David | 11.2016 36

A,

e Quiescent states at their extreme

—Deletions wait all readers to reach a
safe state

e Introduced in the Linux kernel in
72002
— More than 10000 uses in the kernel!

e (Example) Interface
—rcu_read lock (= gs_unsafe)
—rcu_read_unlock (= gs_safe)

—synchronize rcu - wait all readers
!mg!lfcl! Tudor David | 11.2016

A A,

e Search / Traverse e Delete
rcu_read_lock() .-+ physical

. deletion of X
rcu_read_unlock() gynchronize rcuQ)

free(X)

e + s1mple

e + read-only
workloads

o
e — bad for writes
!mg!ifclH! Tudor David | 11.2016 38
FEDERALE DE LAUSANNE

Memory Reclamation: Summary

A i,

e How and when to reuse freed memory

e Many techniques, no silver bullet
. Reference counting
Hazard pointers

2
3. Quiescent states
4. Read—Copy Update (RCU)

.(Pﬂ. Tudor David | 11.2016 39
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Summary

A,

e Concurrent data structures are very
important

e Optimistic concurrency necessary for
scalability
—Only recently a lot of active work for CDSs

e Memory reclamation is
— Inherent to optimistic concurrency;
— A difficult problem;

— A potential performance/scalability
bottleneck
!mg!lfclw! Tudor David | 11.2016 10

