
Igor Zablotchi | 12.2017 1

Concurrent Data Structures
Concurrent Algorithms 2017

Igor Zablotchi

(based in part on slides by Tudor David and Vasileios Trigonakis)

Igor Zablotchi | 12.2017 2CA

Data Structures (DSs)

• Constructs for efficiently storing and retrieving data
– Different types: lists, hash tables, trees, queues, …

• Accessed through the DS interface
– Depends on the DS type, but always includes
– Store an element
– Retrieve an element

• Element
– Set: just one value
– Map: key/value pair

Igor Zablotchi | 12.2017 3ASCY

Concurrent Data Structures (CDSs)

• Concurrently accessed by multiple threads
– Through the CDS interface à linearizable operations!

• Really important on multi-cores
• Used in most software systems

Igor Zablotchi | 12.2017 4CA

What do we care about in practice?

• Progress of individual operations - sometimes
• More often:
– Number of operations per second (throughput)
– The evolution of throughput as we increase the number

of threads (scalability)

0

5

10

15

1 10 20 30 40Th
ro

ug
hp

ut
(M

op
/s)

Threads

Igor Zablotchi | 12.2017 5CA

DS Example: Linked List

• A sequence of elements (nodes)
• Interface
– search (aka contains)
– insert
– remove (aka delete)

1 2 3 5 6 8

struct node
{

value_t value;
struct node* next;

};

4insert(4)

delete(6)

Igor Zablotchi | 12.2017 6CA

Search Data Structures

• Interface
1. search
2. insert
3. remove

• Semantics
1. read-only
2. read-only
3. read-only
4. read-write

k
search(k)

modify(k)parse(k)
update(k)

updates

Igor Zablotchi | 12.2017 7OPTIK

Concurrency Control

• How threads synchronize their writes to the shared memory
(e.g., nodes)
– Locks
– CAS
– Transactional memory

Igor Zablotchi | 12.2017 8OPTIK

Optimistic vs. Pessimistic Concurrency

(Lesson1) Optimistic concurrency is the only way to get scalability

20-core Xeon
1024 elements

0

2

4

6

8

10

12

1 10 20 30 40

Th
ro

ug
hp

ut
(M

op
/s)

Cores

"bad" linked list "good" linked list

pessimistic

traverse

traverse

Igor Zablotchi | 12.2017 9OPTIK

Tools for Optimistic Concurrency Control (OCC)

• RCU: slow in the presence of updates
– (also a memory reclamation scheme)

• STM: slow in general
• HTM: not ubiquitous, not very fast (yet)

• Wait-free algorithms: slow in general
• (Optimistic) Lock-free algorithms: J
• Optimistic lock-based algorithms: J

We either need a lock-free or an optimistic lock-based algorithm

Igor Zablotchi | 12.2017 10CA

Parenthesis: Target platform

2-socket Intel Xeon E5-2680 v2 Ivy Bridge
– 20 cores @ 2.8 GHz, 40 hyper-threads
– 25 MB LLC (per socket)
– 256GB RAM

c c cc
c c cc
c c

c c cc
c c cc
c c

Igor Zablotchi | 12.2017 11OPTIK

Concurrent Linked Lists – 5% Updates

Wait-free algorithm is slow L

1024 elements
5% updates

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37

Th
ro

ug
hp

ut
(M

op
s/s

)

Number of threads

Blocking Lock-free Wait-free

Igor Zablotchi | 12.2017 12OPTIK

Optimistic Concurrency in Data Structures

Validation plays a key role in concurrent data structures

operation

optimistic prepare
(non-synchronized)

perform
(synchronized)

Pattern

validate
(synchronized)optimistic prepare perform

failed

find insertion spot validate

insert

Example
linked list
insert

detect conflicting
concurrent operations

Igor Zablotchi | 12.2017 13OPTIK

Validation in Concurrent Data Structures

• Lock-free: atomic operations

– marking pointers, flags, helping, …
• Lock-based: lock à validate

– flags, pointer reversal, parsing twice, …
Validation is what differentiates algorithms

validate & perform (atomic ops)optimistic prepare

failed

lockoptimistic prepare perform unlockvalidate

unlock failed

Igor Zablotchi | 12.2017 14

Let’s design two concurrent linked lists:
A lock-free and a lock-based

Igor Zablotchi | 12.2017 15OPTIK

Lock-free Sorted Linked List: Naïve

Is this a correct (linearizable) linked list?

find modification spot CASInsert

find modification spot CASDelete

find spot returnSearch

Igor Zablotchi | 12.2017 16OPTIK

Lock-free Sorted Linked List: Naïve – Incorrect

• What is the problem?
– Insert involves one existing node;
– Delete involves two existing nodes

How can we fix the problem?

P0: find modification spot P0:CAS

x

y
P0: Insert(x)
P1: Delete(y)

P1: find modification spot P1:CAS

Lost update!

Igor Zablotchi | 12.2017 17OPTIK

Lock-free Sorted Linked List: Fix

• Idea! To delete a node, make it unusable first…
– Mark it for deletion so that

1. You fail marking if someone changes next pointer;
2. An insertion fails if the predecessor node is marked.

à In other words: delete in two steps
1. Mark for deletion; and then
2. Physical deletion

y
Delete(y) find modification spot 1. CAS(mark)

2. CAS(remove)

Igor Zablotchi | 12.2017 18OPTIK

1. Failing Deletion (Marking)

• Upon failure à restart the operation
– Restarting is part of “all” state-of-the-art-data structures

P0: find modification spot P0:CAS

x

y
P0: Insert(x)
P1: Delete(y)

P1: find modification spot P1:CAS(mark) à false

Igor Zablotchi | 12.2017 19OPTIK

1. Failing Insertion due to Marked Node

• Upon failure à restart the operation
– Restarting is part of “all” state-of-the-art-data structures

How can we implement marking?

P0: find modification spot P0:CAS à false
y

P0: Insert(x)
P1: Delete(y)

P1: find modification spot P1:CAS(mark)
P1:CAS(remove)

Igor Zablotchi | 12.2017 20OPTIK

Implementing Marking (C Style)

• Pointers in 64 bit architectures
– Word aligned - 8 bit aligned!

next pointer 000

boolean mark(node_t* n)
uintptr_t unmarked = n->next & ~0x1L;
uintptr_t marked = n->next | 0x1L;
return CAS(&n->next, unmarked, marked) == unmarked;

Igor Zablotchi | 12.2017 21OPTIK

Lock-free List: Putting Everything Together

• Traversal: traverse (requires unmarking nodes)
• Search: traverse
• Insert: traverse à CAS to insert
• Delete: traverse à CAS to mark à CAS to remove

• Garbage (marked) nodes
– Cleanup while traversing

(helping in this course’s terms)

A pragmatic implementation of lock-free linked lists

What happers
if this CAS

fails??

Igor Zablotchi | 12.2017 22OPTIK

What is not Perfect with the Lock-free List?

1. Garbage nodes
– Increase path length; and
– Increase complexity

if (is_marked_node(n)) …
2. Unmarking every single pointer
– Increase complexity

curr = get_unmark_ref(curr->next)

Can we simplify the design with locks?

Igor Zablotchi | 12.2017 23OPTIK

Lock-based Sorted Linked List: Naïve

Is this a correct (linearizable) linked list?

find modification spot lockInsert

find modification spot lock(predecessor)Delete

find spot returnSearch

lock(target)

Igor Zablotchi | 12.2017 24OPTIK

Lock-based List: Validate After Locking

find modification spot lockInsert

find modification spot lock(predecessor)Delete

find spot returnSearch

lock(curr)

validate !pred->marked && pred->next did not change

!pred->marked && !curr->marked && pred->next did not change

mark(curr)

Igor Zablotchi | 12.2017 25OPTIK

Concurrent Linked Lists – 0% updates

(Lesson2) Sequential complexity matters à Simplicity J

0

10

20

30

40

50

1 10 20 30 40

Th
ro

ug
hp

ut
(M

op
/s)

Cores

lock-free lock-based

1024 elements
0% updates

Just because the lock-
based is not unmarking!

Igor Zablotchi | 12.2017 26CA

Another DS Example: the Skiplist

• The linked list is:
– Easy to understand/design
– But slow: O(n) for search, insert & remove

• A good alternative: the binary search tree (BST)
– O(log(n)) search, insert & remove if balanced (else O(n))
– Needs rebalancing: slow

• An even better alternative: the skiplist
– O(log(n)) search, insert & remove
– Builds on the simplicity of the linked list
– No need to rebalance

Igor Zablotchi | 12.2017 27CA

Skiplist Overview

• Linked list:
– One next pointer per

node

• Skiplist:
– Multiple levels of

pointers per node

Level 1

Level 0

…

node

node

Igor Zablotchi | 12.2017 28CA

Skiplist Overview

Each node has a random number of levels
Higher levels are shortcuts for lower levels

1 3 5 7 10 12

Igor Zablotchi | 12.2017 29CA

Searching in a Skiplist

1 3 5 7 10 12

We’re searching for 7!

Igor Zablotchi | 12.2017 30CA

Inserting in a Skiplist (single-threaded)

1 3 5

7

10 12

We want to insert 7

Igor Zablotchi | 12.2017 31CA

Deleting from a Skiplist (single-threaded)

1 3 5 7 10 12

We want to delete 7

Igor Zablotchi | 12.2017 32

Let’s design a lock-free skiplist!

Igor Zablotchi | 12.2017 33CA

Lock-free Skiplist – Searches

• Similar to the single-threaded case
• Search for the element on every level, starting with

the topmost level
• Element is in the skiplist if present on level 0.

1 3 5 7 10 12

Igor Zablotchi | 12.2017 34CA

Lock-free Skiplist – Insert

• Randomly choose number of levels of new node
• Find predecessors and successors for new element
• Set element’s next pointers to successors
• Atomically link element into level 0 (lin. point)
• Link element into higher levels, one by one

1 3 5
7

10 12

Igor Zablotchi | 12.2017 35CA

Lock-free Skiplist – Delete

• Find predecessors and successors for element
• Atomically mark element’s next pointers one by one, starting from top
• Atomically mark bottom level next pointer (lin. point)
• Unlink marked node from all levels

1 3 5 7 10 12

Igor Zablotchi | 12.2017 36OPTIK

Optimistic Concurrency Control: Summary

• Lock-free: atomic operations

– marking pointers, flags, helping, …
• Lock-based: lock à validate

– flags, pointer reversal, parsing twice, …

validate & perform (atomic ops)optimistic prepare

failed

lockoptimistic prepare perform unlockvalidate

unlock failed

Igor Zablotchi | 12.2017 37OPTIK

Summary

• Concurrent data structures are very important
• Optimistic concurrency necessary for scalability
– Only recently a lot of active work for CDSs

Igor Zablotchi | 12.2017 38CA

Word of caution: lock-based algorithms

• Search data structures J
• Queues, stacks, counters, ... L

0

0.5

1

1.5

2

2.5

3

Th
ro

ug
hp

ut
(M

op
/s)

Queue, 40 threads

Lock-based Non-blocking

