Concurrent Algorithms 2014 Exercise 7

November 11, 2014

Problem 1

A *k-set-agreement* object is a generalization of a consensus object in which processes could decide up to *k* different values. Formally, *k*-set-agreement satisfies the following properties:

- 1. *Validity:* Values decided by each process are the values proposed some processes.
- 2. *Agreement:* At most *k* different values could be decided.
- 3. Termination: Every correct process eventually decides a value.

Your task is to show that *k*-set-agreement and *k*-consensus, given in the class, are equivalent. That is, you have to show that one implements the other.

Problem 2

Below is an algorithm that implements a single state machine replication using consensus shared objects: **Local:**

Local.	
sM	<pre>// a copy of the state machine</pre>
Commands	// a list of command
ready	// binary register (initially true)

Shared:

Consensus

// a list of shared consensus objects

while(true) {

```
if ready then c = Commands.next()
cons = Consensus.next()
c' = cons.propose(c)
sM.perform(c')
if c' == c then ready = true
else ready = false
}
```

The algorithm ensures the following correctness properties:

- 1. *Validity:* If a process p_i performs command c, then c was issued by some process p_i and p_i performed every command issued by p_i before c.
- 2. *Ordering:* If a process performs command *c* without having performed command *c*', then no process performs *c*' without having performed *c*.
- 3. *Progress:* Every correct process performs an infinite number of commands on the state machine.

However the algorithm is not *fair*, i.e. it does not ensure the following property:

• *Fairness:* If a correct process issues command *c*, then it eventually performs *c* on the state machine.

Your task:

- 1. Show why the algorithm does not ensure fairness, i.e. show an execution violating the property.
- 2. Modify the algorithm so that the resulting algorithm would ensure fairness.