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The system model
• Concurrency: several communicating processes executing at the 

same time;
• Implicit communication: shared memory;
– Resources – shared between processes;
– Communication – implicit through shared resources;
– Synchronization – locks, condition variables, non-blocking algorithms, 

etc.
• Explicit communication: message passing;
– Resources – partitioned between processes;
– Communication – explicit message channels;
– Synchronization – message channels;
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Whatever can be expressed using shared memory 
can be expressed using message passing



So far – shared memory view

• set of registers that any process can read or write to;
• communication – implicit through these registers;
• problems: 
– concurrency bugs – very common;
– scalability - not great when contention high;
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Alternative model: message passing
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• more verbose
– but – can better control how information is sent in the multi-core.

P1 P2
R1

R2
R3

R4

• how do we get message passing on multicores?
– dedicated hardware message passing channels (e.g. Tilera)
– more common – use dedicated cache lines for message queues



Programming using message passing

• System design – more similar to distributed systems;
• Map concepts from shared memory to message passing;

• A few examples:
– Synchronization, data structures: flat combining;
– Programming languages: e.g. Go, Erlang;
– Operating systems: the multikernel (e.g. Barrelfish)
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Barrelfish: All Communication - Explicit

• Communication – exclusively message passing
• Easier reasoning: know what is accessed when and by whom
• Asynchronous operations – eliminate wait time
• Pipelining, batching
• More scalable



Barrelfish: OS Structure – Hardware Neutral

Separate OS structure from hardware
Machine dependent components
• Messaging
• HW interface

Better layering, modularity
Easier porting



Barrelfish: Replicated State

• No shared memory => replicate shared OS state
• Reduce interconnect load
• Decrease latencies
• Asynchronous client updates
• Possibly NUMA aware replication



Consistency of replicas: agreement protocol
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Implicit communication
(shared memory)

Explicit communication
(message passing)

Replicated stateLocally cached data

State machine replication Total ordering of updates Agreement

High availability, High scalability

How should we do message-passing agreement in a multi-core?



Outline

§ The multi-core as a distributed system
§ Case study: agreement

§ The distributed system as a multi-core
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First go – a blocking protocol
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1. broadcast Prepare 2. wait for Acks

3. broadcast 
Commit/Rollback

4. wait for Acks

Two-Phase Commit (2PC)

Blocking, all messages go through coordinator



Is a blocking protocol appropriate?
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“Latency numbers every programmer should know”

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Compress 1K bytes 3 000 ns

Send 1K bytes over 1 Gbps network 10 000 ns

Read 4K randomly from SSD 150 000 ns

Read 1MB sequentially from memory 250 000 ns

Round trip within datacenter 500 000 ns

Read 1 MB sequentially from SSD 1 000 000 ns

Disk seek 10 000 000 ns

Read 1 MB sequentially from disk 20 000 000 ns

Send packet CA->Netherlands->CA 150 000 000 ns

Source: Jeff Dean

Blocking agreement –
only as fast as the slowest participant 

• Scheduling?
• I/O?

Use a non-blocking protocol



Non-blocking agreement protocols

Paxos
• Tolerates non-malicious faults or 

unresponsive nodes: in multi-cores, 
slow cores

• Needs a majority of responses to 
progress (tolerates partitions)
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Phase 1: prepare
Phase 2: accept

Roles:
• Proposer
• Acceptor
• Learner

Lots of variations and optimizations: 
CheapPaxos, MultiPaxos, FastPaxos
etc.

Usually – all roles on a 
physical node
(Collapsed Paxos)

Consensus ~ non-blocking agreement between distributed processes 
on one out of possibly multiple proposed values



MultiPaxos
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Does MultiPaxos scale in a multi-core?
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Limited scalability in the multi-core environment
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A closer look at the multi-core environment
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Where does time go when sending a message?

Large networks:
Minimize number of rounds/instance

Multi-core:
Minimize the number of messages



Can we adapt Paxos to this scenario?
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Replication of data (reliability):
Long-term memory

Replication of service (availability):
Advocate client commands

Resolve contention between proposers, 
short-term memory (reliability, availability)

Using one acceptor significantly reduces the number of messages



1Paxos: The failure-free case
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1. P2: obtains active acceptor A1 
and sends prepare_request(pn)

2. A1: if pn -> max. proposal 
received, replies to P2 with ack

4. A1 broadcasts value to learners

3. P2 -> A1 
accept_request(pn, value)

Common case: only steps 3 and 4

1 2 3



1Paxos: Switching the acceptor
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1. P2 leader?

2.PaxosUtility: P2 proposes
• A3 active acceptor
• Uncommitted proposed 

values
3. P2 -> A3: prepare_request



1Paxos: Switching the leader
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1. A1 – active acceptor?

2. PaxosUtility: P3 new leader 
and A1 active acceptor

3. P3 -> A1: prepare_request

P



Switching leader and acceptor
The trade-off:

while leader and active acceptor 
non-responsive at the same 

time
✖ liveness ✔safety
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Why is it reasonable?
• small probability event
• no network partitions
• if nodes not crashed, but slow -> 

system becomes responsive 
after a while



Latency and throughput
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Agreement  - summary
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Agreement in multi-cores
• non blocking
• reduced # of messages

Use one acceptor: 1Paxos
• reduced latency
• increased throughput

Multi-core – message passing distributed system, 
but distributed algorithm implementations different



Outline

§ The multi-core as a distributed system
§ Case study: agreement
§ The distributed system as a multi-core
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Remote Direct Memory Access (RDMA)
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Remote direct memory access
x Read / write remote memory

x NIC performs DMA requests

x FaRM uses RDMA extensively
x Reads to directly read data
x Writes into remote buffers for messaging

x Great performance
x Bypasses the kernel
x Bypasses the remote CPU

RAM CPU NIC

Machine A

RAM CPU NIC

Machine B

Network

DMA

DMA

3

Source:	A.	Dragojevic

Read/Write remote memory
NIC performs DMA requests

Great performance
Bypasses the kernel
Bypasses the remote CPU
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