Alternative system models

Tudor David

Outline

= The multi-core as a distributed system
= (ase study: agreement
= The distributed system as a multi-core

The system model

* (oncurrency: several communicating processes executing at the
same time;
* |mplicit communication: shared memory;
— Resources - shared between processes;
— Communication - implicit through shared resources;

— Synchronization - locks, condition variables, non-blocking algorithms,
etc.

* Explicit communication: message passing;
— Resources - partitioned between processes;
— Communication - explicit message channels;
— Synchronization - message channels;

Whatever can be expressed using shared memory
can be expressed using message passing

(UN)

So far - shared memory view

* set of registers that any process can read or write to;
» communication - implicit through these registers;

* problems:
— concurrency bugs - very common;
— scalability - not great when contention high; Scalability
8 Queue Lock Throughput
6

Mops/s
N

| .

o N

2 10 20 40 &0
COres 4

Alternative model: message passing

e more verbose
— but - can better control how information is sent in the multi-core.

([[[[]]] T T lr—,
<€—{ 111 [T r—>
<[] T [—>

* how do we get message passing on multicores?
— dedicated hardware message passing channels (e.g. Tilera)
— more common - use dedicated cache lines for message queues

Programming using message passing

* System design - more similar to distributed systems;

* Map concepts from shared memory to message passing;

* Afew examples:
— Synchronization, data structures: f
— Programming languages: e.g. Go, Er
— Operating systems: the multikerne

at combining;
ang;

(e.g. Barrelfish)

Barrelfish: All Communication - Explicit

Communication - exclusively message passing

Easier reasoning: Rnow what is accessed when and by whom
Asynchronous operations - eliminate wait time

Pipelining, batching

More scalable

Barrelfish: 0S Structure - Hardware Neutral

Separate 0S structure from hardware
Machine dependent components

* Messaging

 HW interface

Better [ayering, modularity
Easier porting

Barrelfish: Replicated State

No shared memory => replicate shared 0S state
Reduce interconnect load

Decrease latencies

Asynchronous client updates

Possibly NUMA aware replication

Consistency of replicas: agreement protocol

Implicit communication Explicit communication

(shared memory) el (message passing)

Locally cached data mmmmmn) | Replicated state
N

fState machine replication ——> Total ordering of updates ——> Agreemerh

High availability, High scalability

How should we do message-passing agreement in a multi-core?

10

Outline

= The multi-core as a distributed system
= (3se study: agreement
= The distributed system as a multi-core

11

First go - a blocking protocol

Two-Phase Commit (2P()

3. broadcast 4. wait for Acks
Commit/Rollback -<:

Blocking, all messages go through coordinator

1. broadcast Prepare

12

Is a blocking protocol appropriate?

“Latency numbers every programmer should know”

Blocking agreement - L1 cache reference 0505
only as fast as the slowest participant Branch mispredict 505
|2 cache reference 7Ns
Mutex lock/unlock 251s
@mory reference @
° 5Ch€dU|ing? Compress 1K bytes 3000Ns
° |/ 0? Send 1K bytes over 1 Gbps network 10000 ns
Read 4K randomly from SSD 150 000 ns
Read 1MB sequentially from memory 250 000 ns
Round trip within datacenter 500 000 ns
Read 1 MB sequentially from SSD. 1,000 000 NS
@h 10 ooo@
Read 1 MB sequentially from disk 20 000 000 ns

Send packet (A->Netherlands->CA 150 000 000 ns

Source: Jeff Dean
13

Non-blocRing agreement protocols

Consensus ~ non-blocking agreement between distributed processes
on one out of possibly multiple proposed values

Paxos Phase 1: prepare
* Tolerates non-malicious faults or Phase 2: accept
unresponsive nodes: in multi-cores,
Roles:
. * Proposer
* Needs a majority of responses to . A cle)z otor
progress (tolerates partitions)
Lots of variations and optimizations: Usually - all roles on 3
CheapPaxos, MultiPaxos, FastPaxos physical node

etc. (Collapsed Paxos)

14

* Unless failed, keep same
leader in subsequent
rounds

MultiPaxos

¢1)00)
Ea-AK)

.
o
¢
\ "o
\—

15

Throughput

Does MultiPaxos scale in a multi-core?

MultiPaxos, 3 replicas

10000

=
o
o
o

[
o
o

[
o

[T
[

10 100
Number of clients

==Multi-core ==Large area network

Limited scalability in the multi-core environment

16

A closer look at the multi-core environment

Where does time go when sending a message?

100%

80% Large networks:

Minimize number of rounds/instance

60%
M Propagation etc.

% of time

0 .
40% M Processing

20%

0% - T
Multi-core LAN
<1Uus ~100 us

17

(an we adapt Paxos to this scenario?

o
g

-
X

\——

.
=3

Evi i)

)

Or—

o

Replication of service (availability):
Advocate client commands

Resolve contention between proposers,
short-term memory (reliability, availability)

Replication of data (reliability):
Long-term memory

Using one acceptor significantly reduces the number of messages

18

1Paxos: The failure-free case

2. A1:if pn -> max. proposal
received, replies to P2 with ack

fzﬁ f;

9 ° 1. P2: obtains active acceptor Al
and sends prepare_request(pn)

\

N\

i/
‘<

3.P2->A1
T accept_request(pn, value)
Qe - 4. A1 broadcasts value to learners

Common case: only steps 3 and 4

19

1Paxos: Switching the acceptor

1. P2 leader?

2.PaxosUtility: P2 proposes
A3 active acceptor
* Uncommitted proposed

values
3.P2 -> A3: prepare_request

20

1Paxos: Switching the leader

1. A1 - active acceptor?

2. PaxosUtility: P3 new leader
and A1 active acceptor

3.P3 -> Al: prepare_request

21

Switching leader and acceptor
The trade-off:

(o) S)] Wwhileleader and active acceptor
non-responsive at the same

time
% liveness +safety

» small probability event

— — —— + nonetwork partitions

* if nodes not crashed, but slow ->
system becomes responsive
after a while

22

8.00t-04

7.00E-04

6.00E-04

5.00E-04

4.00t-04

Latency (seconds)

3.00E-04

2.00E-04

1.00E-04

0.00E+00

Latency and throughput

\

45 clients .
) 3 replicas
‘l’ 7P
e===MultiPaxos
7 clients ~1Paxos
6 clients /
\ .
<= 13 clients

20000 40000 60000 80000 100000 120000 140000

Throughput (updates/second)

Smaller # of messages - smaller latency and increased throughput

23

Agreement - summary

Multi-core - message passing distributed system,
but distributed algorithm implementations different

Agreement in multi-cores Use one acceptor: 1Paxos
* non blocking * reduced latency
* reduced # of messages * increased throughput

24

Outline

= The multi-core as a distributed system
= (ase study: agreement
= The distributed system as a multi-core

25

Remote Direct Memory Access (RDMA)

Machine A
DMA

Read/Write remote memory

NIC performs DMA requests RAM
Great performance Network
Bypasses the Rernel
Bypasses the remote (PU RAM | cpU
=1
| DMA
Machine B

Source: A. Dragojevic

26

Requests / us / server

--RDMA -=RDMA msg <> TCP

0

go—+++

7/

6

5

g W o------- ;- e

3

2

(]5<>. <> <> <> <> <> <> <>

16 32 64 128 256 512 1024 2048

Source: A. Dragojevic

Transfer bytes (log)
FaRM: Fast Remote Memory (NSDI'14) - Dragojevic et al.

27

