
Alternative system models

Tudor David

Outline

§ The multi-core as a distributed system
§ Case study: agreement
§ The distributed system as a multi-core

2

The system model
• Concurrency: several communicating processes executing at the

same time;
• Implicit communication: shared memory;
– Resources – shared between processes;
– Communication – implicit through shared resources;
– Synchronization – locks, condition variables, non-blocking algorithms,

etc.
• Explicit communication: message passing;
– Resources – partitioned between processes;
– Communication – explicit message channels;
– Synchronization – message channels;

3

Whatever can be expressed using shared memory
can be expressed using message passing

So far – shared memory view

• set of registers that any process can read or write to;
• communication – implicit through these registers;
• problems:
– concurrency bugs – very common;
– scalability - not great when contention high;

4

0

2

4

6

8

2 10 20 40 80

Mo
ps

/s

cores

Queue Lock Throughput
Scalability

Alternative model: message passing

5

• more verbose
– but – can better control how information is sent in the multi-core.

P1 P2
R1

R2
R3

R4

• how do we get message passing on multicores?
– dedicated hardware message passing channels (e.g. Tilera)
– more common – use dedicated cache lines for message queues

Programming using message passing

• System design – more similar to distributed systems;
• Map concepts from shared memory to message passing;

• A few examples:
– Synchronization, data structures: flat combining;
– Programming languages: e.g. Go, Erlang;
– Operating systems: the multikernel (e.g. Barrelfish)

6

Barrelfish: All Communication - Explicit

• Communication – exclusively message passing
• Easier reasoning: know what is accessed when and by whom
• Asynchronous operations – eliminate wait time
• Pipelining, batching
• More scalable

Barrelfish: OS Structure – Hardware Neutral

Separate OS structure from hardware
Machine dependent components
• Messaging
• HW interface

Better layering, modularity
Easier porting

Barrelfish: Replicated State

• No shared memory => replicate shared OS state
• Reduce interconnect load
• Decrease latencies
• Asynchronous client updates
• Possibly NUMA aware replication

Consistency of replicas: agreement protocol

10

Implicit communication
(shared memory)

Explicit communication
(message passing)

Replicated stateLocally cached data

State machine replication Total ordering of updates Agreement

High availability, High scalability

How should we do message-passing agreement in a multi-core?

Outline

§ The multi-core as a distributed system
§ Case study: agreement

§ The distributed system as a multi-core

11

First go – a blocking protocol

12

1. broadcast Prepare 2. wait for Acks

3. broadcast
Commit/Rollback

4. wait for Acks

Two-Phase Commit (2PC)

Blocking, all messages go through coordinator

Is a blocking protocol appropriate?

13

“Latency numbers every programmer should know”

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Compress 1K bytes 3 000 ns

Send 1K bytes over 1 Gbps network 10 000 ns

Read 4K randomly from SSD 150 000 ns

Read 1MB sequentially from memory 250 000 ns

Round trip within datacenter 500 000 ns

Read 1 MB sequentially from SSD 1 000 000 ns

Disk seek 10 000 000 ns

Read 1 MB sequentially from disk 20 000 000 ns

Send packet CA->Netherlands->CA 150 000 000 ns

Source: Jeff Dean

Blocking agreement –
only as fast as the slowest participant

• Scheduling?
• I/O?

Use a non-blocking protocol

Non-blocking agreement protocols

Paxos
• Tolerates non-malicious faults or

unresponsive nodes: in multi-cores,
slow cores

• Needs a majority of responses to
progress (tolerates partitions)

14

Phase 1: prepare
Phase 2: accept

Roles:
• Proposer
• Acceptor
• Learner

Lots of variations and optimizations:
CheapPaxos, MultiPaxos, FastPaxos
etc.

Usually – all roles on a
physical node
(Collapsed Paxos)

Consensus ~ non-blocking agreement between distributed processes
on one out of possibly multiple proposed values

MultiPaxos

15

P

A

L

P

A

L

P

A

L

• Unless failed, keep same
leader in subsequent
rounds

Does MultiPaxos scale in a multi-core?

16

Limited scalability in the multi-core environment

1

10

100

1000

10000

100000

1 10 100

Th
ro

ug
hp

ut

Number of clients

MultiPaxos, 3 replicas

Multi-core Large area network

A closer look at the multi-core environment

17

0%

20%

40%

60%

80%

100%

Multi-core LAN

%
 of

 ti
me

Propagation etc.

Processing

< 1 us ~100 us

Where does time go when sending a message?

Large networks:
Minimize number of rounds/instance

Multi-core:
Minimize the number of messages

Can we adapt Paxos to this scenario?

18

P

A

L

P

A

L

P

A

L
Replication of data (reliability):
Long-term memory

Replication of service (availability):
Advocate client commands

Resolve contention between proposers,
short-term memory (reliability, availability)

Using one acceptor significantly reduces the number of messages

1Paxos: The failure-free case

19

P

A

L

P

A

L

P

A

L

1. P2: obtains active acceptor A1
and sends prepare_request(pn)

2. A1: if pn -> max. proposal
received, replies to P2 with ack

4. A1 broadcasts value to learners

3. P2 -> A1
accept_request(pn, value)

Common case: only steps 3 and 4

1 2 3

1Paxos: Switching the acceptor

20

P

A

L

P

A

L

P

A

L

1 2 3

A

1. P2 leader?

2.PaxosUtility: P2 proposes
• A3 active acceptor
• Uncommitted proposed

values
3. P2 -> A3: prepare_request

1Paxos: Switching the leader

21

P

A

L

P

A

L

P

A

L

1 2 3

1. A1 – active acceptor?

2. PaxosUtility: P3 new leader
and A1 active acceptor

3. P3 -> A1: prepare_request

P

Switching leader and acceptor
The trade-off:

while leader and active acceptor
non-responsive at the same

time
✖ liveness ✔safety

22

P

A

L

P

A

L

P

A

L

Why is it reasonable?
• small probability event
• no network partitions
• if nodes not crashed, but slow ->

system becomes responsive
after a while

Latency and throughput

23

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

7.00E-04

8.00E-04

0 20000 40000 60000 80000 100000 120000 140000

La
te

nc
y (

se
co

nd
s)

Throughput (updates/second)

3 replicas

2PC

MultiPaxos

1Paxos

Smaller # of messages - smaller latency and increased throughput

45 clients

6 clients

7 clients

13 clients

Agreement - summary

24

Agreement in multi-cores
• non blocking
• reduced # of messages

Use one acceptor: 1Paxos
• reduced latency
• increased throughput

Multi-core – message passing distributed system,
but distributed algorithm implementations different

Outline

§ The multi-core as a distributed system
§ Case study: agreement
§ The distributed system as a multi-core

25

Remote Direct Memory Access (RDMA)

26

Remote direct memory access
x Read / write remote memory

x NIC performs DMA requests

x FaRM uses RDMA extensively
x Reads to directly read data
x Writes into remote buffers for messaging

x Great performance
x Bypasses the kernel
x Bypasses the remote CPU

RAM CPU NIC

Machine A

RAM CPU NIC

Machine B

Network

DMA

DMA

3

Source:	A.	Dragojevic

Read/Write remote memory
NIC performs DMA requests

Great performance
Bypasses the kernel
Bypasses the remote CPU

27

0
1
2
3
4
5
6
7
8
9

10

16 32 64 128 256 512 1024 2048

Re
qu

es
ts

 /
 µ

s
/

se
rv

er

Transfer bytes (log)

RDMA RDMA msg TCP

4FaRM: Fast Remote Memory (NSDI’14) – Dragojevic et al.

Source:	A.	Dragojevic

