
1

Liveness of Transactional
Memory

Victor Bushkov
Distributed Programming Laboratory

2

Part I

Defining transactional memory
liveness

3

Properties covered so far

• wait-freedom
• lock-freedom
• obstruction-freedom

4

Wait-freedom

Every operation by every non-crashed process eventually
returns a response

5

Wait-freedom: example

p1

p2

p3

invokes op1

invokes op2

invokes op3

p1 and p2 continue
taking steps

p3 crashes

6

Wait-freedom: example

p1

p2

p3

invokes op1

invokes op2

invokes op3
p3 crashes

response res1 of op1

response res2 of op2

7

Lock-freedom

Every operation by some non-crashed process eventually
returns a response

8

Lock-freedom: example

p1

p2

op1

op2 res2

p1 takes infinitely
many steps without
getting response

op3 res3 op4 res4

every operation by p2
returns a response

• execution is not wait-free
• but it is lock-free

9

Obstruction-freedom

If a process p becomes the only process taking steps, then
every operation by p eventually returns a response

10

Obstruction-freedom: example

p1

p2

op1

op2

• execution is lock-free
• and it is obstruction-free

p2 crashes

op3 res3 op4 res4res1

every operation by p1
returns a response

11

Obstruction-freedom: example

p1

p2

op1

op2

p1 takes infinitely
many steps without
getting response

• execution is not lock-free
• but it is obstruction-free

p2 takes infinitely
many steps without
getting response

12

What is common between these
three properties?

13

What is common between these
three properties?

• state that some good event must eventually happen
• i.e. they are liveness properties

14

Liveness vs Safety

Correctness

Liveness Safety

15

Liveness vs Safety

Correctness

Liveness Safety
• wait-freedom (termination)
• lock-freedom
• obstruction-freedom

16

Liveness vs Safety

Correctness

Liveness Safety
• wait-freedom (termination)
• lock-freedom
• obstruction-freedom

• validity and agreement
• regularity of registers
• atomicity (linearizability)
• opacity

17

Liveness vs Safety

Liveness: some good events should eventually happen

Safety: some bad events should never happen

18

Liveness vs Safety

Liveness: some good events should eventually happen

Safety: some bad events should never happen

• violated in finite execution

19

Liveness vs Safety

Liveness: some good events should eventually happen

Safety: some bad events should never happen

• cannot be violated in a finite execution

• violated in finite execution

Liveness of shared objects

• In shared objects good events are responses

21

Liveness of shared objects

• In shared objects good events are responses
• In case of wait-freedom, lock-freedom, and obstruction-

freedom any response is a good event i.e.:

22

Liveness of shared objects

• In shared objects good events are responses
• In case of wait-freedom, lock-freedom, and obstruction-

freedom any response is a good event i.e.:

p1

op1 res1

e.g. in case of wait-freedom we do not
care if we get res1 or some other
response res′1

23

Transactional memory (TM) as a
shared objects

base
object

base
object

TM object

Algorithm
of TM
implemen-
tation

process

TM operation
invocation

TM operation
response

24

Transactional memory (TM) as a
shared objects

examples of some TM operations
• x.read() - returns value of data item x
• x.write(v) - writes value v to data item x
• commit() - commits current transaction
• begin_tr() - starts a transaction

25

Transactional memory (TM) as a
shared objects

examples of some TM operations
• x.read() - returns value of data item x
• x.write(v) - writes value v to data item x
• commit() - commits current transaction
• begin_tr() - starts a transaction

• every TM operation can return abort event A which aborts
current transaction

26

Is wait-freedom enough in TM
context?

27

Is wait-freedom enough in TM
context?

p1
T1 x.read()

0

A

p2

28

Is wait-freedom enough in TM
context?

p1
T1 x.read() A

T2 y.write(1)
p2

ok

A

29

Is wait-freedom enough in TM
context?

p1
T1 x.read() A

T2 y.write(1)
p2

A

30

Is wait-freedom enough in TM
context?

p1
T1 x.read() A

T2 y.write(1)
p2

A

T3 x.read()
0

A

31

Is wait-freedom enough in TM
context?

p1
T1 x.read() A

T2 y.write(1)
p2

A

T3 x.read() A

32

Is wait-freedom enough in TM
context?

p1
T1 x.read() A

T2 y.write(1)
p2

A

T3 x.read() A

T4 y.write(1)
ok

A

33

Is wait-freedom enough in TM
context?

p1
T1 x.read() A

T2 y.write(1)
p2

A

T3 x.read() A

T4 y.write(1) A

34

Meaningful progress

• wait-freedom is trivially ensured by aborting every TM
operation

35

Meaningful progress

• wait-freedom is trivially ensured by aborting every TM
operation

• operation termination is not enough

36

Meaningful progress

• wait-freedom is trivially ensured by aborting every TM
operation

• operation termination is not enough
• operations need to receive meaningful responses

37

What about the following
property?

• Every TM operation by every non-crashed process
eventually returns a response which is not an abort event

38

What about the following
property?

• Every TM operation by every non-crashed process
eventually returns a response which is not an abort event

• It can be violated in a finite execution → it is not liveness

p1
T1 x.read() 0 y.write(1) ok commit() A

39

What about the following
property?

• Every TM operation by every non-crashed process
eventually returns a response which is not an abort event

• It can be violated in a finite execution → it is not liveness
• TM loses its meaning without ability to abort (TM

becomes equivalent to universal construction)

p1
T1 x.read() 0 y.write(1) ok commit() A

40

TM liveness property should
• allow every transaction to be aborted, and

Meaningful progress

41

TM liveness property should
• allow every transaction to be aborted, and
• require processes to eventually commit some transaction

(make progress)

Meaningful progress

42

• a process might have some of its transactions aborted

What does eventually committing
some transactions mean?

p1
T1 A T2 A T3 A

43

• a process might have some of its transactions aborted
• but for any point in time of the execution eventually there

is a transaction that commits

What does eventually committing
some transactions mean?

p1
T1 A T2 A T3 A T4 C T5 A T6 A Tk C

Eventually there is a
transaction that commits

44

Can we require eventual
commitment of any process?

begin_tr()
 while(value = i) do {
 value := x.read();
 x.write(value + 1);
 i := i+1;
 }
commit()

Initially:
value, i = -1
x = 0

45

Can we require eventual
commitment of any process?

p1
T1

p1 repeatedly reads and
writes x without ever
invoking a commit request

x.read() 0 x.write(1) ok x.read() 1

begin_tr()
 while(value = i) do {
 value := x.read();
 x.write(value + 1);
 i := i+1;
 }
commit()

Initially:
value, i = -1
x = 0

46

We cannot require progress of processes which are not
correct in a given infinite execution α:
• processes which crash in α, or

Correct processes

47

We cannot require progress of processes which are not
correct in a given infinite execution α:
• processes which crash in α, or
• processes which execute a transaction which is not

aborted and does not invoke a commit request in α

Correct processes

48

We cannot require progress of processes which are not
correct in a given infinite execution α:
• processes which crash in α, or
• processes which execute a transaction which is not

aborted and does not invoke a commit request in α

Correct processes

49

p1
T1

p1 is not correct in the given
execution

x.read() 0 x.write(1) ok x.read() 1

begin_tr()
 while(value = i) do {
 value := x.read();
 x.write(value + 1);
 i := i+1;
 }
commit()

Correct processes
Initially:
value, i = -1
x = 0

50

p1
T1 x.read() 1 x.write(1) ok commit() C

begin_tr()
 while(value = i) do {
 value := x.read();
 x.write(value + 1);
 i := i+1;
 }
commit()

Correct processes

p2
T2

x.write(1) ok

commit() C

p1 is correct in the given
execution

Initially:
value, i = -1
x = 0

51

Correct processes

p1
T1 C

T2 C
p2

T3 C

T4 C

T4 C

T5 C

• p1 is correct in the given execution

52

Correct processes

p1
T1 C

T2 C
p2

T3 C

T4 C

T4 C

T5 C

• p1 is correct in the given execution
• the notion of a correct process depends on an execution

53

p1
T1 x.read() 1 x.write(1) A

begin_tr()
 while(value = i) do {
 value := x.read();
 x.write(value + 1);
 i := i+1;
 }
commit()

Correct processes

p2
T2

x.write(1) ok

commit() C

Initially:
value, i = -1
x = 0

54

Correct processes

p1
T1 A

T2 C
p2

T3 A

T4 C

T4 A

T5 C

• p1 is correct in the given execution

55

Correct processes

p1
T1 A

T2 C
p2

T3 A

T4 C

T4 A

T5 C

• p1 is correct in the given execution
• a process which is never given possibility to invoke a

commit request is still considered correct

56

Correct processes

p1
T1 A T2 A T3 A

• p1 is correct in the given execution
• a process which is never given possibility to invoke a

commit request is still considered correct

57

A correct process p makes progress in an infinite execution
α if infinitely many transaction of p commit in α

Making progress (in TM context)

58

A correct process p makes progress in an infinite execution
α if infinitely many transaction of p commit in α

Making progress (in TM context)

p1
T1 A T2 A T3 A

• a process might have some of its transactions aborted

59

A correct process p makes progress in an infinite execution
α if infinitely many transaction of p commit in α

Making progress (in TM context)

p1
T1 A T2 A T3 A T4 C T5 A T6 A Tk C

• a process might have some of its transactions aborted
• but for any point in time of the execution eventually there

is a transaction that does not abort (and consequently
commits)

60

TM liveness

An infinite execution α is TM-wait-free if every correct
process makes progress in α

61

TM liveness

An infinite execution α is TM-wait-free if every correct
process makes progress in α

p1
T1 A T4 A T7 C T10 A T12 A T14 C

p2
T2 A T5 C T8 A T11 C T13

p3
T3 C T6 A T9

p3 crashes

p2 never invokes commit
request in T13

p1 makes progress

62

TM liveness

An infinite execution α is TM-lock-free if some correct
process makes progress in α

63

TM liveness

An infinite execution α is TM-lock-free if some correct
process makes progress in α

p1
T1 A T4 A T7 C T10 A T12 C T14 C

p2
T2 A T5 C T8 A T11 A

p3
T3 C T6 A T9

p3 crashes

p2 is correct but has only one
committing transaction

p1 makes progress

T13 A T15 A

64

TM liveness

An infinite execution α is TM-obstruction-free if for every
correct process p in α the following holds: if eventually p
becomes the only process taking steps, then p makes
progress in α

65

TM liveness

An infinite execution α is TM-obstruction-free if for every
correct process p in α the following holds: if eventually p
becomes the only process taking steps, then p makes
progress in α

p1
T1 A T4 A T7 C T10 A T12 A T14 C

p2
T2 A

p3
T3 C T6 A T9

p3 crashes

p1 makes progress

p2 crashes

66

Liveness: take home
When arguing about liveness of a shared object
implementation, things to keep in mind:

67

Liveness: take home
When arguing about liveness of a shared object
implementation, things to keep in mind:

• depending on the context liveness properties might be
defined different ways

68

Liveness: take home
When arguing about liveness of a shared object
implementation, things to keep in mind:

• depending on the context liveness properties might be
defined different ways

• specification might include several different kinds of
liveness properties (e.g. TM-obstruction-freedom for
transactions + wait-freedom for individual TM operations)

69

Liveness: take home
When arguing about liveness of a shared object
implementation, things to keep in mind:

• depending on the context liveness properties might be
defined different ways

• specification might include several different kinds of
liveness properties (e.g. TM-obstruction-freedom for
transactions + wait-freedom for individual TM operations)

• be accurate when specifying which processes should
make progress

70

Part II

The impossibility of TM-wait-
freedom

71

Wait-freedom

• Wait-freedom forms the basis of consensus number
hierarchy

72

Wait-freedom

• Wait-freedom forms the basis of consensus number
hierarchy

• In most cases we need to use powerful base objects (like
consensus, CAS) to implement wait-freedom

73

Wait-freedom

• Wait-freedom forms the basis of consensus number
hierarchy

• In most cases we need to use powerful base objects (like
consensus, CAS) to implement wait-freedom

• Not the case for TM-wait-freedom:
- it cannot be implemented together with opacity

irrespectively of the power of base objects being used

74

Impossibility

Theorem

• There is no TM implementation that:
- ensures TM-wait-freedom and

75

Impossibility

Theorem

• There is no TM implementation that:
- ensures TM-wait-freedom and
- opacity

76

Impossibility

Theorem

• There is no TM implementation that:
- ensures TM-wait-freedom and
- opacity
- in an asynchronous system

77

Proof

To prove the result
• We use processes and a scheduler as an adversary

78

Proof

To prove the result
• We use processes and a scheduler as an adversary

• The adversary forces any TM implementation to produce
an execution that violates TM-wait-freedom

79

Proof: processes

• consider a system of two processes p1 and p2

80

Proof: processes

• consider a system of two processes p1 and p2

• processes keep executing infinitely many transactions with
the following code

begin_tr()

 value := x.read();
 x.write(value + 1);

commit()

81

Proof: execution

p1
T x.read()

0

A

p2

82

Proof: execution

p1
T x.read() A

p2

T x.read()
0

A

83

Proof: execution

p1
T x.read() A

p2

T x.read() A T x.read() 0

by TM-wait-freedom

84

Proof: execution

p1

p2

T A T x.read() 0

T x.read()
0

A

85

Proof: execution

p1

p2

T A T x.read() 0

T x.read() A

86

Proof: execution

p1

p2

T A T x.read() 0

T x.read() A T x.read()
0

A

87

Proof: execution

p1

p2

T A T x.read() 0

T A T x.read() 0

by TM-wait-freedom

88

Proof: execution

p1

p2

T A T x.read() 0

T A T x.read() 0 x.write(1)
ok

A

89

Proof: execution

p1

p2

T A T x.read() 0

T A T x.read() 0 x.write(1) A T x.read()
0

A

90

Proof: execution

p1

p2

T A T x.read() 0

x.write(1)

T A T x.read() 0

ok

commit() C

p2 repeats executing the
transaction until eventually
the transaction is committed
(by TM-wait-freedom)

91

Proof: execution

p1

p2

T A T x.read() 0

x.write(1)

T A T x.read() 0

ok

commit() C

x.write(1)
ok

A

92

Proof: execution

p1

p2

T A T x.read() 0

x.write(1)

T A T x.read() 0

ok

commit() C

x.write(1) A T

x.read()
0

A

93

Proof: execution

p1

p2

T A T x.read() 0

x.write(1)

T A T x.read() 0

ok

commit() C

x.write(1) A T

x.read() 0

T

x.read()
0

A

if the write by p1 aborts we repeat the whole execution
again until the write by p1 is not aborted (by TM-wait-
freedom)

94

Proof: execution

p1

p2

T1 x.read() 0

x.write(1)

T2 x.read() 0

ok

commit() C

x.write(1) ok

commit()

C

A

95

Proof: execution

p1

p2

T1 x.read() 0

x.write(1)

T2 x.read() 0

ok

commit() C

x.write(1) ok

commit()

what happens if T1 is allowed to commit?

C

96

Proof: execution

p1

p2

T1 x.read() 0

x.write(1)

T2 x.read() 0

ok

commit() C

x.write(1) ok

commit()

what happens if T1 is allowed to commit?
• opacity is violated

C

97

Proof: violating opacity

x.write(1)

T2 x.read() 0

ok

commit() C

x.write(1)

T1 x.read() 0

ok

commit() C

T1 is serialized before T2

98

Proof: violating opacity

x.write(1)

T2 x.read() 0

ok

commit() C

x.write(1)

T1 x.read() 0

ok

commit() C

x.write(1)

T1 x.read() 0

ok

commit() C

x.write(1)

T2 x.read() 0

ok

commit() C

T1 is serialized before T2

T2 is serialized before T1

99

Proof: execution

p1

p2

T1 x.read() 0

x.write(1)

T2 x.read() 0

ok

commit() C

x.write(1) ok

commit() A

after aborting T1 we repeat the execution infinitely often

100

Proof: execution

p1

p2
T2 C

T1 A

T2 C

T1 A

T2 C

T1 A

We get an infinite execution in which:
• p1 is correct

101

Proof: execution

p1

p2
T2 C

T1 A

T2 C

T1 A

T2 C

T1 A

We get an infinite execution in which:
• p1 is correct
• p1 does not make progress

102

Circumventing impossibility
To implement TM-wait-freedom
• consider a safety property weaker than opacity

103

Circumventing impossibility
To implement TM-wait-freedom
• consider a safety property weaker than opacity

• consider a weaker model
- partially synchronous system in which some process

crashes are detectable and no transaction can loop
forever without invoking a commit request

104

Circumventing impossibility
To implement TM-wait-freedom
• consider a safety property weaker than opacity

• consider a weaker model
- partially synchronous system in which some process

crashes are detectable and no transaction can loop
forever without invoking a commit request

- model in which a transaction can be executed by
several processes (helping mechanism)

105

Resources

https://lpd.epfl.ch/site/_media/education/tm_liveness_paper.pdf

Overview paper on the liveness of TM:

https://lpd.epfl.ch/site/_media/education/tm_liveness_paper.pdf
https://lpd.epfl.ch/site/_media/education/tm_liveness_paper.pdf

