Liveness of Transactional
Memory

Victor Bushkov
Distributed Programming Laboratory

Part |

Defining transactional memory
liveness

Properties covered so far

e wait-freedom
e |ock-freedom
e obstruction-freedom

Wait-freedom

Every operation by every non-crashed process eventually
returns a response

Walit-freedom: example

INnVokes op1
\ p1 and p2 continue
_ taking steps
Invokes op2 /
Invokes ops3

X p3z crashes

Walit-freedom: example

iInvokes op1 response rest of op1
iInvokes op: response res; of opz
Invokes ops3

X p3z crashes

Lock-freedom

Every operation by some non-crashed process eventually
returns a response

Lock-freedom: example

e execution is not wait-free
e butitis lock-free

p1 takes infinitely
many steps without
Op1 getting response

0] o) res 0Ops3 ress 0] oY res4

every operation by p>
returns a response

Obstruction-freedom

If a process p becomes the only process taking steps, then
every operation by p eventually returns a response

Obstruction-freedom: example

e execution is lock-free
e and it is obstruction-free

OpP1 reS1 0Op3 ress 0op4 reS4

every operation by p+

op2 returns a response

p2 ——X p2 crashes

10

Obstruction-freedom: example

e execution is not lock-free
e but it is obstruction-free

p1 takes infinitely
many steps without
Op1 getting response

op2

p2 takes infinitely
many steps without
getting response ’

What is common between these
three properties?

12

What is common between these
three properties?

e state that some good event must eventually happen
* |.e. they are liveness properties

13

Liveness vs Safety

Correctness

/ \

Liveness Safety

14

Liveness vs Safety

Correctness

/ \

Liveness Safety

e wait-freedom (termination)
e |ock-freedom
e obstruction-freedom

15

Liveness vs Safety

Correctness

/

Liveness

e wait-freedom (termination)
e |ock-freedom
e obstruction-freedom

\

Safety

validity and agreement
regularity of registers
atomicity (linearizability)
opacity

16

Liveness vs Safety

Liveness: some good events should eventually happen

Safety: some bad events should never happen

17

Liveness vs Safety

Liveness: some good events should eventually happen

Safety: some bad events should never happen

e violated in finite execution

18

Liveness vs Safety

Liveness: some good events should eventually happen

e cannot be violated in a finite execution

Safety: some bad events should never happen

e violated in finite execution

19

Liveness of shared objects

* In shared objects good events are responses

Liveness of shared objects

* In shared objects good events are responses

* |In case of wait-freedom, lock-freedom, and obstruction-
freedom any response is a good event i.e.:

21

Liveness of shared objects

* In shared objects good events are responses

* |In case of wait-freedom, lock-freedom, and obstruction-
freedom any response is a good event i.e.:

e.g. in case of wait-freedom we do not
care if we get ress or some other
response res’y

op1 ress

22

Transactional memory (TM) as a
shared objects

+ TM object
TM operation)
,nvocatmn/:J Algorithm

, | of TM

base
/)(MJ
[process + | implemen- X
, | tation
TM operation : base '
\(MJ 5

response 1 \L J
I

23

Transactional memory (TM) as a
shared objects

examples of some TM operations

e x.read() - returns value of data item x

e x.write(v) - writes value v to data item x
e commit() - commits current transaction
* begin tr() - starts a transaction

24

Transactional memory (TM) as a
shared objects

examples of some TM operations

e x.read() - returns value of data item x

e x.write(v) - writes value v to data item x
e commit() - commits current transaction
* begin tr() - starts a transaction

e every TM operation can return abort event A which aborts
current transaction

25

Is wait-freedom enough in TM
context?

26

p1

p2

Is wait-freedom enough in TM
context?

T x.read()

27

p1

p2

Is wait-freedom enough in TM

context?
T x.lread()—>A
ok

T2 y.write(1)

28

p1

p2

Is wait-freedom enough in TM
context?

T x.read()—>A

T2 y.write(1) >A

29

p1

p2

Is wait-freedom enough in TM

context?
0
7:1 x.lread()—>A 7:3 x_(ead()
' ' ' ' A

T2 y.write(1) >A

30

p1

p2

Is wait-freedom enough in TM

context?
7;1 x.:read() —>A 7:3 x.read()—A

T2 y.write(1) >A

31

Is wait-freedom enough in TM
context?

T x.read()—>A T3 x.read()—=>A

p1

ok

T2 ywrite(1) >A T4 y.write(1)
P2 i i i : \ A

32

p1

p2

Is wait-freedom enough in TM

context?
T x.read()—>A Tj x.read()—>A
T2 y-write(1)—>A T, y.write(1)—A

33

Meaningful progress

* wait-freedom is trivially ensured by aborting every TM
operation

34

Meaningful progress

* wait-freedom is trivially ensured by aborting every TM
operation

e operation termination is not enough

35

Meaningful progress

wait-freedom is trivially ensured by aborting every TM
operation

operation termination is not enough
operations need to receive meaningful responses

36

What about the following
property?

 Every TM operation by every non-crashed process
eventually returns a response which is not an abort event

37

What about the following
property?

 Every TM operation by every non-crashed process
eventually returns a response which is not an abort event

e [t can be violated in a finite execution — it is not liveness

T+ x.read()—>0 y.write(1)—>o0k commit() > A
pr | | i :

38

What about the following
property?

 Every TM operation by every non-crashed process
eventually returns a response which is not an abort event

e [t can be violated in a finite execution — it is not liveness

* TM loses its meaning without ability to abort (TM
becomes equivalent to universal construction)

T+ x.read()—>0 y.write(1)—>o0k commit() > A
pr | | i :

39

Meaningful progress

TM liveness property should
e allow every transaction to be aborted, and

40

Meaningful progress

TM liveness property should
e allow every transaction to be aborted, and

* require processes to eventually commit some transaction
(make progress)

41

What does eventually committing
some transactions mean?

e a process might have some of its transactions aborted

42

What does eventually committing
some transactions mean?

e a process might have some of its transactions aborted

e but for any point in time of the execution eventually there
IS a transaction that commits

Eventually there is a
transaction that commits 43

Can we require eventual

commitment of any process?
begin tr()

_ _ Initially:
while(value = i) do { value. i = -1
value = x.read(); 0 |
X —_

x.write(value + 1);
[= +1;
}

commit()

44

Can we require eventual

commitment of any process?
begin tr()

while(value = i) do { :/”;;':;'yl .
value = x.read(); ’
x.write(value + 1); x=0
[= +1;

}

commit()
7, Xread()—>0 x.write(1)—>0k x.read()—>1

pr | i i —— e

p1 repeatedly reads and /

writes x without ever
iInvoking a commit request

Correct processes

We cannot require progress of processes which are not
correct in a given infinite execution a:

e processes which crash in a, or

46

Correct processes

We cannot require progress of processes which are not
correct in a given infinite execution a:

e processes which crash in a, or

e processes which execute a transaction which is not
aborted and does not invoke a commit request in a

47

Correct processes

We cannot require progress of processes which are not
correct in a given infinite execution a:

e processes which crash in a, or

e processes which execute a transaction which is not
aborted and does not invoke a commit request in a

48

p1

Correct processes

begin_tr()

while(value = i) do {
value = x.read();
x.write(value + 1);
[= +1;

}

commit()

x.read()—>0 x.write(1)—>o0k

Initially:

value, | = -1

x=0

x.read()—1

T1

p1 is not correct in the given
execution

49

Correct processes

begin_tr() Initially:
while(value = i) do {

value, i = -1
value = x.read(); Xazuoe |
x.write(value + 1);
[= +1;
) p1 1s correct in the given
commit() execution
T x.read()—>1 x.write(1)—>ok commit()—>C
p1 i | } | e

T, X write(1) —=>ok
p2 : | : ..
commit()—>C

50

Correct processes

Ty C Ts C T4 C
p 1 P 0000000000 4 F oooooooooo 4 F oooooooooo 4
T C T+ C Is C
p 2 P 4 F) 4 F 4 ooooooo

* pyis correct in the given execution

51

Correct processes

Ty C Ts C T4 C
p 1 P 0000000000 4 F oooooooooo 4 F oooooooooo 4 oooooooooo
T C T+ C Is C
p 2 P 4 F) 4 F 4 ooooooooooooooooo

* pyis correct in the given execution
* the notion of a correct process depends on an execution

52

Correct processes

begin_tr() Initially:
while(value = i) do {

value, i = -1
value = x.read(); X =0
x.write(value + 1);
[= +1;
}
commit()
T x.read()—>1 x.write(1)—>A
p1 | i | sttt ittt anns

T, X write(1) —=>ok
p2 : | : ..
commit()—>C

53

Correct processes

T+ A Ts A Ty A
p 1 P 0000000000 4 F oooooooooo 4 F oooooooooo 4
T C T+ C Is C
p 2 P 4 F) 4 F 4 ooooooo

* pyis correct in the given execution

54

Correct processes

T+ A Ts A Ty A
p 1 P 0000000000 4 F oooooooooo 4 F oooooooooo 4 oooooooooo
T C T+ C Is C
p 2 P 4 F) 4 F 4 ooooooooooooooooo

* pyis correct in the given execution

e a process which is never given possibility to invoke a
commit request is still considered correct

55

Correct processes

* pyis correct in the given execution

e a process which is never given possibility to invoke a
commit request is still considered correct

56

Making progress (in TM context)

A correct process p makes progress in an infinite execution
a if infinitely many transaction of p commit in a

57

Making progress (in TM context)

A correct process p makes progress in an infinite execution
a if infinitely many transaction of p commit in a

e a process might have some of its transactions aborted

58

Making progress (in TM context)

A correct process p makes progress in an infinite execution
a if infinitely many transaction of p commit in a

e a process might have some of its transactions aborted

* but for any point in time of the execution eventually there

IS a transaction that does not abort (and consequently
commits)

59

TM liveness

An infinite execution a is TM-wait-free if every correct
process makes progress in d

60

TM liveness

An infinite execution a is TM-wait-free if every correct
process makes progress in d

p1 makes progress

p2 never invokes commit
request in T13

61

TM liveness

An infinite execution a is TM-lock-free if some correct
process makes progress in d

62

TM liveness

An infinite execution a is TM-lock-free if some correct
process makes progress in d

p1 makes progress

Ir ATs ATz CTiwo ATz CTisa C

p1 Foo 4 F 4 F...H Foo 4 F 004 F 004 oooooooooooooooo
To. ATs CTg ATy ATz AT A

p2 F.. 4 F 4 F ..4 F.. 4 F 004 F...H oooooooooooooooo

p2 is correct but has only one
committing transaction

63

TM liveness

An infinite execution a is TM-obstruction-free if for every

correct process p in a the following holds: if eventually p

becomes the only process taking steps, then p makes
progress in a

64

TM liveness

An infinite execution a is TM-obstruction-free if for every

correct process p in a the following holds: if eventually p

becomes the only process taking steps, then p makes
progress in a

p1 makes progress

T A
p2 k---= X p2crashes

Is CTse A Ty
p3 bkeo= b=--=| =X p3crashes

65

Liveness: take home

When arguing about liveness of a shared object
iImplementation, things to keep in mind:

66

Liveness: take home

When arguing about liveness of a shared object
iImplementation, things to keep in mind:

* depending on the context liveness properties might be
defined different ways

67

Liveness: take home

When arguing about liveness of a shared object
iImplementation, things to keep in mind:

* depending on the context liveness properties might be
defined different ways

e specification might include several different kinds of
liveness properties (e.g. TM-obstruction-freedom for
transactions + wait-freedom for individual TM operations)

68

Liveness: take home

When arguing about liveness of a shared object
iImplementation, things to keep in mind:

* depending on the context liveness properties might be
defined different ways

e specification might include several different kinds of
liveness properties (e.g. TM-obstruction-freedom for
transactions + wait-freedom for individual TM operations)

* be accurate when specifying which processes should
make progress

69

Part I

The impossibility of TM-wait-
freedom

Wait-freedom

e \Wait-freedom forms the basis of consensus number
hierarchy

71

Wait-freedom

e \Wait-freedom forms the basis of consensus number
hierarchy

* In most cases we need to use powerful base objects (like
consensus, CAS) to implement wait-freedom

72

Wait-freedom

e \Wait-freedom forms the basis of consensus number
hierarchy

* In most cases we need to use powerful base objects (like
consensus, CAS) to implement wait-freedom

* Not the case for TM-wait-freedom:

- it cannot be implemented together with opacity
irrespectively of the power of base objects being used

73

Impossibility
Theorem

* There is no TM implementation that:
- ensures TM-wait-freedom and

74

Impossibility
Theorem
* There is no TM implementation that:

- ensures TM-wait-freedom and
- opacity

75

Impossibility
Theorem

* There is no TM implementation that:
- ensures TM-wait-freedom and
- opacity
- In an asynchronous system

76

Proof

To prove the result
* \We use processes and a scheduler as an adversary

77

Proof

To prove the result
* \We use processes and a scheduler as an adversary

* The adversary forces any TM implementation to produce
an execution that violates TM-wait-freedom

78

Proof: processes

e consider a system of two processes ps and p2

79

Proof: processes

e consider a system of two processes ps and p2

* processes keep executing infinitely many transactions with
the following code

begin_tr()

value := x.read();
x.write(value + 1);

commit()

80

p1

P2

T

x.read()

Proof: execution

0

A

81

Proof: execution
/ 0

I xread()>» A T x.read()

p1 — — A

P2

p1

P2

Proof: execution

x.read()> A T x.read()>A T
— —

by TM-wait-freedom

83

Proof: execution

I A T xread()>0

p1 |.....||_|

T

x.read()

p2 —

84

Proof: execution

I A T xread()>0

p1 |.....||_|

T x.read()> A

P2

—

85

Proof: execution

I xread()> A T x.read()

P2

— —

86

P2

Proof: execution

by TM-wait-freedom

87

P2

Proof: execution

I A T xread()>0 x.write(1)

Foood oo]

ok

88

Proof: execution

Foood oo]

—

I A T xread()>0 x.write(1)>AT x.read()

89

Proof: execution

I A T xread()>0
p1 ko ——

I A T x.read()>0 commit()>C
.I. oo I_Ii [)

X. Write(a)>0k

p2 repeats executing the
transaction until eventually
the transaction is committed
(by TM-wait-freedom)

90

Proof: execution

A T xread()>0 x.write(1)
p1 ko ——
I A T x.read()>0 commit()>C
p2 Beode s b—— ' :

X. Write(a)>0k

_|\

ok

A

91

Proof: execution

x.write(1)>A T
—

p1 Fe-oq--- |_|
I A T x.read()>0 commit()>C
p2 B —t ' :

X. Write(a)>0k

—

x.read()

7
~

92

0

A

Proof: execution

T A T xread()>0 xwrte()>A T
p1 |.. . .I. oo l—l ()
x.read()>0
T A T x.read()>0 commit()>C T
D2 Fooqe - p—f— — | — A
x.write(1)>ok X. read()\

if the write by ps aborts we repeat the whole execution
again until the write by p+ is not aborted (by TM-wait-
freedom)

93

Proof: execution

T+ x.read()>0 commit()
...... p— i :

X. Write(a)>0k

T2 x.read()> 0

commit()>C
— :

X. Write(a)>0k

C

94

Proof: execution

T1 x.read() >0 commit()~>

...... I_I : :
x.write(1)>ok

T2 x.read()> 0 commit()>C
............ : F] :

X. Write(a)>0k

what happens if T+ is allowed to commit?

C

95

Proof: execution

T1 x.read() >0 commit()~>

...... I_I : :
x.write(1)>ok

T2 x.read()> 0 commit()>C
............ : F] :

X. Write(a)>0k

what happens if T+ is allowed to commit?
* opacity is violated

C

96

Proof: violating opacity

T1 is serialized before T>

T1 x.read()> 0 commit()>C T2 x.read()> 0 commit()>C
— - - -1 -1

X. Writea)>0k x.write(1)>ok

97

Proof: violating opacity

T1 is serialized before T>

T1 x.read()> 0 commit()>C T2 x.read()> 0 commit()>C
x.write(1)>ok x.write(1)>ok

T2 is serialized before T1

T2 x.read()> 0 commit()>C T1 x.read()> 0 commit()>C

X. Write(a)>0k X. Write(%)>0k

98

Proof: execution

T+ x.read()>0 commit()>A
...... — i :
x.write(1)>ok

T2 x.read()> 0

commit()>C
............ | |—]

X. Write(a)>0k

after aborting T+ we repeat the execution infinitely often

99

Proof: execution

We get an infinite execution in which:
* p1is correct

100

Proof: execution

We get an infinite execution in which:
* p1is correct
* p1does not make progress

101

Circumventing impossibility

To implement TM-wait-freedom
e consider a safety property weaker than opacity

102

Circumventing impossibility

To implement TM-wait-freedom
e consider a safety property weaker than opacity

e consider a weaker model

- partially synchronous system in which some process
crashes are detectable and no transaction can loop
forever without invoking a commit request

103

Circumventing impossibility

To implement TM-wait-freedom
e consider a safety property weaker than opacity

e consider a weaker model

- partially synchronous system in which some process
crashes are detectable and no transaction can loop
forever without invoking a commit request

- model in which a transaction can be executed by
several processes (helping mechanism)

104

Resources

Overview paper on the liveness of TM:
https://Ipd.epfl.ch/site/_media/education/tm_liveness_paper.pdf

105

https://lpd.epfl.ch/site/_media/education/tm_liveness_paper.pdf
https://lpd.epfl.ch/site/_media/education/tm_liveness_paper.pdf

