
1 © R. Guerraoui

Implementing
the Consensus Object

with Timing Assumptions

R. Guerraoui
Distributed Programming Laboratory

2

A Modular Approach

We implement Wait-free Consensus (Consensus)
through:

 Lock-free Consensus (L-Consensus)
 and

 Registers
We implement L-Consensus through

 Obstruction-free Consensus (O-Consensus)
 and
 <>Leader (encapsulating timing assumptions and

sometimes denoted Ω)

3

A Modular Approach

Consensus

L-Consensus

O-Consensus <>Leader

<>Synchrony

Registers

4

Consensus

Wait-Free-Termination: If a correct process
proposes, then it eventually decides

Agreement: No two processes decide differently

Validity: Any value decided must have been
proposed

5

L-Consensus

Lock-Free-Termination: If a correct process
proposes, then at least one correct process
eventually decides

Agreement: No two processes decide differently

Validity: Any value decided must have been
proposed

6

O-Consensus

Obstruction-Free-Termination: If a correct process
proposes and eventually executes alone, then the
process eventually decides

Agreement: No two processes decide differently

Validity: Any value decided must have been
proposed

7

Example 1

P2

P1

prop(5) -> 5

prop(0) ->

P3
prop(8) ->

8

Example 2

P2

P1

prop(5) -> 8

P3

prop(0) ->

prop(8) ->

9

O-Consensus Algorithm (idea)
   A process that is eventually « left alone /

scheduled » to execute steps, eventually
decides

   Several processes might keep trying to
concurrently decide until some (unknown)
time: agreement (and validity) should be
ensured during this preliminary period

10

O-Consensus Algorithm (data)
   Each process pi maintains a timestamp ts,

initialized to i and incremented by n
   The processes share an array of register pairs

Reg[1,..,n]; each element of the array
contains two registers:
   Reg[i].T contains a timestamp (init to 0)
   Reg[i].V contains a pair

(value,timestamp) (init to (⊥,0))

11

O-Consensus Algorithm
(functions)

   To simplify the presentation, we assume two
functions applied to Reg[1,..,N]
  highestTsp() returns the highest

timestamp among all elements Reg[1].T,
Reg[2].T, .., Reg[N].T

  highestTspValue() returns the value with
the highest timestamp among all elements
Reg[1].V, Reg[2].V, .., Reg[N].V

12

O-Consensus Algorithm

   propose(v):
   while(true)

   Reg[i].T.write(ts);
   val := Reg[1,..,n].highestTspValue();
   if val = ⊥ then val := v;
   Reg[i].V.write(val,ts);
   if ts = Reg[1,..,n].highestTsp() then
   return(val)
   ts := ts + n

13

O-Consensus Algorithm

   (1) pi announces its timestamp
   (2) pi selects the value with the highest

timestamp (or its own if there is none)
   (3) pi announces the value with its

timestamp
   (4) if pi’s timestamp is the highest, then pi

decides (i.e., pi knows that any process
that executes line 2 will select pi’s value)

14

O-Consensus Algorithm

   propose(v):
   while(true)

   (1) Reg[i].T.write(ts);
   (2) val := Reg[1,..,n].highestTspValue();
   if val = ⊥ then val := v;
   (3) Reg[i].V.write(val,ts);
   (4) if ts = Reg[1,..,n].highestTsp() then
   return(val)
   ts := ts + n

15

A Modular Approach

Consensus

L-Consensus

O-Consensus <>Leader

<>Synchrony

Registers

16

L-Consensus
  We implement L-Consensus using
(a) <>leader (leader()) and
(b) the O-Consensus algorithm

  The idea is to use <>leader to make
sure that, eventually, one process keeps
executing steps alone, until it decides

17

<> Leader

  One operation leader() which does not take any
input parameter and returns, as an output
parameter, a boolean

  A process considers itself leader if the boolean is
true

 Property: If a correct process invokes leader,
then the invocation returns and eventually,
some correct process is permanently the only
leader

18

Example

P2

P1
leader() -> true

P3

leader() -> true

leader() -> false

leader() -> false

leader() -> false

leader() -> true

19

L-Consensus

   propose(v): while(true)
   if leader() then

   Reg[i].T.write(ts);
   val := Reg[1,..,n].highestTspValue();
   if val = ⊥ then val := v;
   Reg[i].V.write(val,ts);
   if ts = Reg[1,..,n].highestTsp()
   then return(val)
   ts := ts + n

20

A Modular Approach

Consensus

L-Consensus

O-Consensus <>Leader

<>Synchrony

Registers

21

From L-Consensus to
Consensus (helping)

•  Every process that decides writes its value in
a register Dec (init to ⊥)

•  Every process periodically seeks for a value in
Dec

22

Consensus
   propose(v)
   while (Dec.read() = ⊥)
   if leader() then

  Reg[i].T.write(ts);
  val := Reg[1,..,n].highestTspValue();
   if val = ⊥ then val := p;
  Reg[i].V.write(val,ts);
   if ts = Reg[1,..,n].highestTsp()
   then Dec.write(val)
  ts := ts + n;

return(Dec.read())

23

<> Leader

  One operation leader() which does not take any
input parameter and returns, as an output
parameter, a boolean

  A process considers itself leader if the boolean is
true
 Properties: (a) If a correct process invokes

leader(), then the invocation returns and (b) if a
correct process keeps invoking leader(), then
eventually, some correct process is
permanently the only leader

24

<>Leader: Algorithm

  We assume that the system is <>synchronous
  There is a time after which there is a lower and an

upper bound on the delay for a process to execute a
local action, a read or a write in shared memory

NB. The time after which the system becomes
synchronous is called the global stabilization time
(GST) and is unknown to the processes

  This model captures the practical observation that
concurrent systems are usually synchronous and
sometimes asynchronous

25

<>Leader: Algorithm
(shared variables)

  Every process pi elects (stores in a local variable
leader) the process with the lowest identity that pi
considers as non-crashed:
 NB. if pi elects pj, then i = j or j < i

  A process pi that considers itself leader keeps
incrementing Reg[i] ; pi claims leadership

  NB. Eventually, only the leader keeps
incrementing Reg[]

26

<>Leader: Algorithm
(local variables)

  Every process periodically increments local
variables clock and check, as well as a local
variable delay whenever its leader changes

  Process pi maintains lasti[j] to record the last
value of Reg[j] pi has read (pi can hence know
whether pj has progressed)

27

<>Leader: Algorithm
(variables)

  The next leader is the one with the smallest id
that makes some progress; if no such process pj
such that j<i exists, then pi elects itself (noLeader
is true)

28

<>Leader: Algorithm
leader(): return(leader)

  leader init to self
  check and delay init to 1
  clock, lasti[j] and Reg[j] init to 0;

  Task:
  while(true) do

 If (leader=self) then
  Reg[i].write(Reg[i].read()+1);
 clock := clock + 1;
  if(clock = check) then
  elect();

29

<>Leader: algorithm (cont’d)
elect():
  noLeader := true;
  for j = 1 to (i-1) do

  if (Reg[j].read() > last[j]) then
  last[j] := Reg[j].read();
  if(leader ≠ pj) then delay:=delay*2;
  check := check + delay;
  leader:= pj;
  noLeader := false;
  break (for);

  if (noLeader) then leader := self;

30

Consensus = Registers + <> Leader
  <>Leader has one operation leader() which does

not take any input parameter and returns, as an
output parameter, a boolean (a process considers
itself leader if the boolean is true)
 Property: If a correct process invokes leader, then the

invocation returns and eventually, some correct
process is permanently the only leader

  <>Leader encapsulates the following synchrony
assumption: there is a time after which a lower
and an upper bound hold on the time it takes for
every process to execute a step (eventual
synchrony)

31

A Modular Approach

Consensus

L-Consensus

O-Consensus <>Leader

<>Synchrony

Registers

32

Minimal Assumptions

  Consensus is impossible in an asynchronous
system with Registers (FLP83, LA88)

  Consensus is possible in an eventually
synchronous system (i.e., <> Leader) with
Registers (DLS88, LH95)

  What is the minimal synchrony assumption
needed to implement Consensus with Registers?

  Is there any weaker timing abstraction than
<>Leader that help Registers solve Consensus

33

Failure detector
•  A failure detector is a distributed (wait-free)

oracle that provides processes with information
about the crashes of processes

•  Examples: P, ◊P, ◊S, ◊W, Ω, ◊Leader

•  NB. A failure detector does only provide
information about crashes (CT96)

34

Failure detector relations
•  We say that a failure detector D implements

abstraction A (e.g., object O) if there is an algorithm
that implements A using D

•  We say that a failure detector D is weaker than a
failure detector D’ if D’ implements D (D ≤ D’)

•  If D is weaker than D’ and D’ is not weaker than D,
then D is said to be strictly weaker than D’ (D < D’)

•  We say that two failure detectors are equivalent if
each is weaker than the other (D ≅ D’)

35

Failure detector Ω
•  Failure detector Ω outputs a process q at every

process p (we say that p trusts q) and
ensures the following property:
• Eventually, the same correct process is
permanently trusted by every process

•  NB. Note that the process that is trusted
might keep changing until some eventual time

36

<>Leader ≅ Ω

•  To implement <>Leader using Ω, every
process simply returns true if it is leader (the
process emulates the output of <>Leader)

•  To implement <>Leader using Ω, every
process writes its name in a shared register L
when leader() returns true; all processes
periodically read L and elect the process in L
(eventually, only one process is elected)

37

Failure detector example
•  Failure detector Ω outputs a process q at every

process p (we say that p trusts q) and
ensures the following property:
•  ◊ unique leader: eventually, the same
correct process is permanently trusted by
every process

•  NB. Note that the process that is trusted
might keep changing until some eventual time

38

Questions
•  (1) Show that Ω is the weakest failure

detector to implement consensus with
Registers (i.e., give an algorithm that
implements Ω with any failure detector that
implements Consensus with Registers)

•  (2) What is the weakest failure detector to
implement Consensus with objects of
consensus number k and Registers?

•  (3) What is the weakest failure to implement
an object with consensus number k using
Registers?

