
Registers 

Introduction 

A register is one of the simplest objects available to us. It contains a single value and can perform read() 

and write() operations. Though it is a fairly simple object, there exist many different types of it, here are 

different possibilities: 

1. What values can be stored in the register? (Boolean or Multi-valued) 

 

2. How many processes are allowed to read and write in the register? The possibilities are:  Single 

Reader Single Writer (SRSW) (only one process can read and only one process can write to the 

register), Multiple Reader Single Writer (MRSW) (any process can read but only one process can 

write to the register) and Multiple Reader Multiple Writer (any process can read and write). 

 

3. What is the behavior of the register under concurrent access? Here we have 3 possible types:  

 

- Safe register:  guarantees only that a read() will return the last value written if no 

concurrent read/write occurred. If a concurrent read/write occurred, all bets are off and the 

register is free to return any value.  

 

- Regular register: stronger “contract” than a safe register.  Under concurrent read/write the 

read() operation must return the value of the register before the write() operation or the 

value currently being written to the register.  

 

- Atomic register: The strongest “contract” is the atomic register. Every operation can be 

viewed as happening at a single point in time. We will illustrate these concepts with plenty 

of examples later. 

Goals 

In this chapter our goal is to build wait free MRMW multi-valued atomic registers from SWSR binary safe 

registers, it comes down to implementing the read and write operations for the atomic MRMW register 

in terms of the read and write operations of safe SWSR registers. Remember that wait free condition 

implies that any call of read() or write() should return no matter the state of other processes. This 

excludes any kind of classical concurrent methods like mutual exclusion. Clearly mutual exclusion 

violates wait free condition: simply imagine two processes A and B, A acquires a lock and crashes, B is 

stuck if it tries to acquire the same lock as A, thus the calls of B may never return.   

Now that we know the goals and tools we can use, let us start transforming binary SRSW registers to 

more complex registers. Through this section we will refer to the operations of lower level register as 

read()  and write() and higher level register operations as Read() and Write(). 

 

 



 

Binary SRSW safe � binary MRSW safe  

The basic idea is to use an array of SRSW register to simulate 

multiple reader behavior. Here is a proposed algorithm in pseudo 

code given in Snippet 1. 

The produced register is MRSW because any number of processes 

can read the value written by the writer (the value is simply 

written to N distinct registers). It is also safe. 

We never imposed a constraint on the values inside the registers, 

so this implementation would also work for multi-valued registers. 

We now argue that this implementation produces regular MRSW 

registers from SRSW regular registers. We need to look at the behavior of our implementation under 

concurrent accesses. It is clear that our SRSW registers contain only two possible values:  the newly 

written value or the previous value (during the write operation some may still contain the old value). So 

any Read() to a register not under the write operation will return either the new or the previous value, 

which is fine for regular registers. A read() operation on the register under write() operation is also fine 

because the SRSW registers are regular and this will return one of the two accepted values. 

Let us show now that this transformation cannot produce atomic registers even if we suppose that we 

have SRSW atomic registers. Here is an execution which could occur: we perform a Read() on the first 

and the Nth register while the write is still updating the N registers. The first Read() will return the new 

value, while the second one will return the old value. 

Figure 1. Inconsistent execution. 

There is clearly no way to place the linearization point on figure 1 for the write operation for this 

execution to be consistent. 

 

 

 

Snippet 1 

Reg[1..N] 

Read()Read()Read()Read()    

  return(Reg[i].read()) 

Write(v)Write(v)Write(v)Write(v)    

  for j = 1 to N 

    Reg[j].write(v) 



Binary MRSW safe � Binary MRSW regular 

The idea is to exploit to the maximum the regular property and the fact that only binary values are 

allowed. The pseudo code for this transformation is presented in Snippet 2. We are writing only when 

necessary, this implies that when a write is performed, the acceptable values for the read() are 0 and 1 

(the previous value of the register is different from the new one, and because the registers are binary 

any value for the read() is accepted). So even if we have a concurrent read/write on a safe register, the 

returned value still satisfies the regular property. 

 We restricted the possible values for the registers to binary, this 

transformation thus doesn’t work for multi-valued registers for 

obvious reasons (the safe register can return anything while only 

2 values are accepted). 

This transformation cannot produce atomic MRSW registers from 

MRSW safe registers. A concurrent read/write can return 0 or 1 

arbitrarily, which is fine for regular registers, but is not acceptable 

for atomic ones. Here is a possible execution with one write and 

two reads.  

 

Figure 2. Inconsistent execution. 

 

Again there is no way to place the linearization point on the figure 2 for the write operation for this 

execution to be consistent. 

 

 

 

 

 

Snippet 2 

Read()Read()Read()Read()  

  return(Reg.read());  

Write(v)Write(v)Write(v)Write(v)  

  if old ≠ v then  

   Reg.write(v); 

   old := v; 



 

Binary MRSW regular �M-valued MRSW regular 

The idea is to represent a value using M binary MRSW registers.  The Read() operation search the first 1 

in the array, when we find it, we return the index. 

The Write() operation is more tricky: we will write a 

1 at the desired position and start cleaning the array 

IN THE INVERSE order starting at the newly written 

1. This ensures that the register contains either the 

old value (if it is smaller than the new value and the 

Write() operation hasn’t cleaned it yet) or the new 

value (if the new value is smaller than the old one 

or the Write()  has already cleaned the old value). 

Thus this register satisfies the regular property. 

Again, this transformation would not produce 

atomic registers, even if the low level registers are 

atomic. Let us try to imagine a scenario where the 

read/write inversion is present first for regular, then 

for atomic low level registers. For regular low level 

registers, the scenario could be the following: we 

start off with our registers initiated to value 1. We write value 5, and the write start cleaning. When the 

writer is changing the register 1, the reader starts reading it. Because the register is regular it can return 

1 or 0. Suppose it returns 0, thus the first read will return the value 5. Suppose the writer is slow, and 

the second reader also hits the register 1, again it can receive a 1 or a 0, suppose 1 is returned. The 

results are presented in Figure 3. We observe the read/write inversion, thus the register produced is not 

atomic.  

 

Figure 3. Inconsistent execution. 

 

   

 

Snippet 3 

Reg[0,1,..,M] init to [1,0,..,0] 

Read()Read()Read()Read()  

  for j = 0 to M  

    if Reg[j].read() = 1    then       
return(j)       

Write(v)Write(v)Write(v)Write(v)  

 Reg[v].write(1);  

 for j=v-1 downto 0  

  Reg[j].write(0); 



This argument won’t hold if the low level registers are atomic (we heavily relied on the regular property 

of the low level registers in the previous argument). We imagine a different scenario for this case: we 

start with a reader that starts reading from left to right; the first writer writes to a register that reader 1 

has already read. The second writer writes to a register that reader 1 hasn’t read yet, we suppose that 

writer 2 is slow for cleaning and will not clean the register that writer 1 modified until reader 2 is done. 

The second reader will now read the value written by writer 1 (because it wasn’t cleaned yet by writer 

2), and reader 1 will return the value written by writer 2, because it “missed” the value written by writer 

1. The results are presented in Figure 4. 

Figure 4. Read/Write inversion.  

 

SRSW regular � SRSW atomic 

As seen in previous sections, the main difference 

between regular and atomic registers is read/write 

inversion. In order to counter this problem we will 

use a timestamp for the writer.  The code for the 

Read and Write operations is presented in the 

Snippet 4. This time, the reader will check the time 

stamp and will return a value if it is older than the 

one it has read previously. 

This algorithm will not work for multiple readers if 

we just use the naïve approach of using one 

register per reader, reader 1 could read the new 

value and reader N could read the old value. We 

already encountered this behavior in SRSW safe to 

MRSW transformation, but because the register we 

were building was safe, it was not a problem. Now 

we need to address it in some way that will 

preserve atomicity. 

 

 

Snippet 4 

Local variables : x,t 

Regular register : Reg 

Read()Read()Read()Read()  

  (t’,x’) = Reg.read() 

  If t’ > t then t = t’; x = x’ 

  Return x 

Write(v)Write(v)Write(v)Write(v)  

  t = t + 1 

  Reg.write(v,t) 



 

SRSW atomic � MRSW atomic 

The basic idea is to make the readers help the writer, and delay the reading until EVERY reader will read 

the new value. The code is presented in the Snippet 5. 

Several explanations are necessary. RReg(i,j) 

represents a register for communication 

between readers i and j, the writer of this 

register is j, and the reader is i. A register i in 

WReg is read by the process i, and is 

naturally written by the writer. The highest 

function simply searches for the largest 

timestamp. The Write() operation writes to 

all WReg registers the value and a 

timestamp. The  Read() operation is more 

complex. We first read what other readers 

have written for us (RReg read), then we 

read what the original writer has written for 

us (WReg.read). We choose the highest 

timestamp from the reads we performed 

earlier and propagate the change to other 

readers (RReg write). This way, when a Read 

completes, EVERY reader is aware of the 

latest value (Because of the write to RReg). 

This approach ensures that any subsequent 

read will never read a value with an older 

timestamp. Thus we have ensured that no 

read/write inversions are possible with this 

implementation.  

This implementation will however not work with multiple writers, because the timestamp is local to a 

writer process. We need some way of having a global timestamp between writers. 

 

 

 

 

 

Snippet 5 

NxN SRSW registers: RReg 

N SRSW registers: WReg 

Read()Read()Read()Read()  

  for j = 1 to N do 

    (t[j],x[j]) = RReg[i,j].read() 

  (t[0],x[0]) = WReg[i].read() 

  (t,x) := highest(t[..],x[..]) 

    for j = 1 to N do  

      RReg[j,i].write(t,x) 

   return(x)       

Write(v)Write(v)Write(v)Write(v)  

  t1 = t1 + 1 

  for j = 1 to N 

    WReg.write(v,t1) 



 

 

MRSW atomic � MRMW atomic 

The major change from before is that now, the 

timestamp is distributed among the writers. The 

technique used is similar to what we used with the 

readers in MRSW atomic registers: the writers 

communicate through N registers and increment 

the highest timestamp at every write. The read 

operation reads all the writer’s registers 

(remember that we used MRSW registers as low 

level registers). There is no possibility of 

read/write inversion because the reader will 

always choose the highest timestamp, and the 

latest write will always have the highest 

timestamp. Note however that we need some way 

to reset the timestamp, because it grows 

indefinitely otherwise. 

 

 

 

 

Conclusion 

During this chapter, we learned how to construct an atomic MRMW register from SRSW safe registers. 

Many transformations and resources were necessary. What would be interesting is to calculate how 

many SRSW safe registers are necessary in order to implement a single MRMW atomic register. 

 

Snippet 5 

N MRSW registers: Reg 

Read()Read()Read()Read()  

  for j = 1 to N do 

    (t[j],x[j]) = Reg[j].read() 

  (t,x) := highest(t[..],x[..]) 

  return(x)       

Write(v)Write(v)Write(v)Write(v)  

  for j = 1 to N do 

    (t[j],x[j]) = Reg[j].read() 

  (t,x) := highest(t[..],x[..])    

        t = t + 1 

  Reg[i].write(v) 


