
THE POWER AND THE LIMITATIONS OF REGISTERS 

INTRODUCTION 

 In the previous lectures we have learnt that, if the hardware doesn’t give us powerful 

atomic wait-free tools, we can build them by ourselves. Concretely we have seen in class how 

to implement different types of registers with different features and properties. We have been 

able to build a MRMW multi-valued atomic register from SRSW binary safe registers. 

 Now, following the same scheme, we wonder what other kind of structures we can 

build with these powerful tools. We can reformulate the question in an even more general 

way: Can we build any kind of structure using registers? 

 

WHAT CAN WE IMPLEMENT? 

COUNTER 

 Let´s start with a simple structure which is the counter. We can define a counter as an 

object that has two main operations: 

- Read() = Returns the current value of the counter 

- Inc() = Increments the value stored by the counter and returns “ok” 

A first approach to implement a counter using only registers could be sharing a register 

and implementing both operations by accessing that register as follows. 

 This implementation could be a possibility but we 

can easily check that it doesn´t respect the atomicity. Why? 

Let´s try to prove it by giving an execution in which we 

cannot establish a linearization point. 

 Imagine a situation in which we have two concurrent 

processes that try to increment the value by invoking the 

operation inc() and a third process that  reads the value of 

the counter after the concurrent increments have finished.  

 

 

 

 

 

 

 

read():read():read():read():    

1  return(Reg.read()) 

inc():inc():inc():inc():    

1  temp:= Reg.read()+1; 

2  Reg.write(temp); 

3  return(ok) 



 We assume that the initial value of the counter is 0 so the reader should receive the 

value 2 but this is not the case. The reader gets the value 1 as a result of two increments from 

0. Let´s try to explain the result with a possible sequence of setps and the corresponding 

diagram 

1) p1 starts the inc() operation. It reads the value of the register in the statement 1 

and start to increment and store it in the temp variable. 

2) p3 starts the inc() while p1 is storing the value of the incremented value in the 

temp variable. p3 gets the value of the register (still 0) in the statement 1. 

3) p1 writes the value of the temp variable (1) inside the register in the statement 2. 

Now the value stored in the shared register is 1. 

4) p3 writes the value of its temp variable (1) inside the register in the statement 2. 

The value of the register is overwritten with 1!! 

5) Both, p1 and p3, returns ok and later p2 starts reading the value of the counter. p2 

receives the value 1 as a result. 

 

 

 

 

 

 

 

 

Now that we have proved that this implementation is not atomic, let´s think about 

other one.  Let´s try to do it with an array of registers (one register per process) in which each 

process increments its own register when they want to increment. We assume that  the array 

is called Reg[1,..,n] where n is the number of processes. 

Note that in this implementation the 

reader must sum the value of all the 

registers from the array. It is done in the 

“for” loop in the statement 2. 

Each register stores the number of 

increments done by the corresponding 

process. 

With this implementation we can always 

find a linearization point because each 

register can only be modified by one 

inc():inc():inc():inc():    

1 Reg[i].write(Reg[i].read() +1); 

2 return(ok) 

read():read():read():read():    

1 sum := 0; 

2 for j = 1 to n do 

2.1     sum := sum + Reg[j].read(); 

3  return(sum) 

Read Inc & temp  write 

INC 

Read() - 1 

Read Inc & temp  write 

INC 

p1 

p2 

p3 



process so the situation that we had in the previous implementation will never exist. The 

following diagram shows the linearization point established for the situation described before. 

 

 

 

 

 

  



SNAPSHOT 

 Now that we have implemented a counter with atomic registers, let´s try to implement 

a more complex structure such as the snapshot. The snapshot is an object that represents an 

array of values and has two main operations: 

- Update(I,v): changes the state of the object. In this case, it writes the value v into 

the register i. 

- Scan(): returns the current state of the whole structure, in this case the values of 

all the registers. 

There is a quite easy implementation which we can think of. We can try to implement 

it with a local array of registers per process but we can easily check that it is not valid since 

each process updates only its own array. When a process scans the snapshot, it doesn´t 

receive the modifications done by other processes. The right way to do it may be using shared 

registers. 

 We can think about using a shared array of registers and implement the operations like 

follows. 

Note that the update operation consists only 

of writing the value in the corresponding register and 

scan one consists only in recollecting the values from 

all the registers and returning them.  

 It seems to be a good implementation of a 

wait-free snapshot but it is not an atomic one. Let´s 

see the atomicity violation with the following 

diagram. 

 

 

 

 

 

 

 

 In the situation that we can see over these lines the scan returns the wrong values 

while it occurs concurrently with two update  operations. If we analyze it carefully we can 

understand what is happening. The scan starts and when it collects the value of the second 

register the first update has not modified it yet so it gets the old value (assuming that the 

registers were initialized with value 0). Then, when the scan collects the value from the third 

register, both updates, the one of p2 and the one of p3, have finished so p1 receives the new 

scan():scan():scan():scan():    

1 for j = 1 to N do 

1.1    x[j] := Reg[j].read(); 

2 return(x) 

update(i,v):update(i,v):update(i,v):update(i,v):    

1 Reg[i].write(v); return(ok) 



value of the third register. As a result the snapshot returns a mixture of old and new values 

which can be regular but not atomic. 

 Let´s try to solve the problem of the atomicity. From now, the scan algorithm that we 

have used is going to be renamed as “collect”. We will implement the scan operation by doing 

several collects. The idea is finding two equal consecutive collects. Then, we could say that we 

have reached a stable situation and we can return the collect. 

Despite the fact that it may not be a wait-free operation, we have to consider another 

situation represented in the following graph in which we can find two consecutive collects that 

are equal but there have been changes between them. 

 

 There is a way of solving this problem that is using timestamps. One possible 

implementation could be the following. 

 Note that each process has a local timestamp 

that is incremented in each update. 

Now, we are sure that this is the 

implementation of an atomic snapshot but we 

have the problem that we mentioned before. 

This is not a wait-free snapshot.  

Imagine that there is someone (a process) that 

updates the snapshot very fast repeatedly and 

another process that wants to perform a scan 

operation. The process that wants to do a scan 

has to do at least two collects to check if there 

have not been changes between them but it 

never ends because the updater modify the 

structure faster, so the one who performs the 

scan never finds two equal collects. 

scan():scan():scan():scan():    

1 temp1 := self.collect(); 

2 while(true) do 

2.1  temp2 := self.collect(); 

2.2  temp1 := temp2; 

2.3  if (temp1 = temp2) then 

return (temp1.val) 

update(i,v):update(i,v):update(i,v):update(i,v):    

1 ts := ts + 1; 

2 Reg[i].write(v,ts); 

3 return(ok) 



 

Let´s try to solve this problem with the following idea. To avoid waiting infinitely for a 

stable snapshot, we will make the updaters save a snapshot too. It will be like asking the 

fastest to save the snapshot before finishing so the processes that want to scan only have to 

look for two equal consecutive collects or for the last snapshot that has happened between 

them. 

 As before, we will use an array of registers but now each register will store the 

corresponding value, the timestamp and a complete snapshot done by the corresponding 

process in its last update operation. The implementation is the following. 

Note that in each component of the array 

there are three fields: value (1), timestamp (2) 

and snapshot (3). 

In the update operation each process has to 

store the value, the timestamp (still local for 

each process) and the full snapshot values 

given by the scan operation. 

In the statement 3.2 of the scan operation, the 

process checks if there has been any changes 

between the two collects (t2 and t3). If there 

has not any change the values are returned (all 

the components 1), otherwise the recent 

snapshot is searched in the “for” statement 

3.3.  

Note that in the statement 3.3.1 we check for 

a timestamp incremented by 2. This is because 

we must be sure that if there is a concurrent 

update with the scan operation and it finishes 

before the scan operation, we take the new changes in account. With this implementation we 

do not have the problem mentioned before of the wait-free violation.  

 

 

WHAT WE CANNOT IMPLEMENT ONLY WITH REGISTERS 

 We´ve seen in the previous pages that we can implement different structures using 

registers combined in some cases with timestamps. But, what can we implement using ‘only’ 

registers? 

 We can think about different structures like queues, Fetch&Inc, Test&Set, Comp&Swa, 

etc. These are very powerful objects that we can try to implement with registers. The main 

problem is what we have seen before while we were designing a counter or a snapshot. After 

update(i,v):update(i,v):update(i,v):update(i,v):    

1 ts := ts + 1; 

2 Reg[i].write(v,ts,self.scan()); 

3 return(ok) 

scan():scan():scan():scan():    

1 t1 := self.collect(); 

2  t2:= t1; 

3 while(true) do 

3.1  t3:= self.collect(); 

3.2  if (t3 = t2) then  

return (t3[1..N,1]); 

3.3 for j = 1 to N do 

3.3.1  if(t3[j,2] ≥ t1[j,2]+2) then 

   return (t3[j,3]) 

3.4  t2 := t3 



implementing them, we have to check conscientiously the validity of the structure and it is not 

always easy. In this section we will use a shortcut to prove that we can (or we cannot) 

implement a structure using only registers. 

 The main idea will be that if we know that we cannot implement the consensus 

between two or more processes using only register and we can do it with a given structure, 

there will be a contradiction, so, that structure cannot be built using only registers. 

 Let´s remember firstly the specification of the consensus.  

- A consensus has one operation propose() that returns a value. When a process 

receives a value v from this operation we say that the process has decided the 

value v. 

- No two processes decide differently. 

- A decided value is a proposed one. 

 

In 1985, Fisher, Lynch and Patterson published an article in which they proved that 

consensus among any number of processes cannot be implemented using only registers. We 

will use this proposition to prove by contradiction that some structures cannot be 

implemented with registers because if we can do it, we would be able to implement the 

consensus. Let´s see how we can implement the consensus using different structures. 

 

In this example we build the operation propose using a 

queue. A queue is an object that has two operations: 

queue(v) that puts the value v in the last position of 

the queue and dequeue() that returns the value stored 

in the first position of the queue. 

If we assume that we initialize the queue with values 

{winner,looser} and we are using wait-free registers 

and queues, then we can easily check that this is a 

wait-free valid implementation since it satisfies all the 

conditions of the consensus and there is no wait 

statement in the implementation. 

 

 

 

 

 

 

CONSENSUS BETWEEEN 2 

PROCESSES USING A QUEUE 

Shared objects 
  R0, R1 : Registers 
  Q : Queue  
    

propose(vpropose(vpropose(vpropose(v iiii))))    

1 Ri.write(vi) 

2 item := Q.dequeue() 

3 if item = winner 

       return(vi) 

4 return(R1-i.read()) 



Here, the consensus operation is implemented using 

fetch&inc. This structure has only one operation that 

returns the stored value incremented by one and at 

the same time it stores that incremented value. 

Assuming that the structure is initialized with the value 

0 and following the reasoning carried in the previous 

implementation we can check that this 

implementation is wait-free and valid. 

 

 

 

 

 

 

 

In this case, the propose() operation is implemented 

with test&set that is a binary structure that holds one 

bit. It has only one operation (test&set(), hence, the 

name of the object) that returns the value of that bit 

(0 or 1) and set the value of that bit to 1. 

Assuming that the test&set is initialized to 0 and 

following again the same reasoning than before we 

can assure that this is also a wait-free implementation 

that satisfies all the conditions established by the 

consensus specifications. 

 

 

 

 

 

 

 

CONSENSUS BETWEEN 2 

PROCESSES USING FETCH&INC 

Shared objects 
  R0, R1 : Registers 
  F : fetch&inc  
 

propose(vpropose(vpropose(vpropose(v iiii))))    

1 Ri.write(vi) 

2 val := F.fetch&inc()  

3 if(val = 1) then 

3.1   return(vI) 

  else 

3.2   return(R1-i.read()) 

CONSENSUS BETWEEN 2 

PROCESSES USING TEST&SET 

Shared objects 
  R0, R1 : Registers 
  T : Test&Set 
 

propose(vpropose(vpropose(vpropose(v iiii))))    

1 Ri.write(vi) 

2 val := T.test&set() 

3 if(val = 0) then 

3.1     return(vI) 

   else  

3.2     return(R1-i.read()) 



Finally we can easily implement also the consensus 

between more than 2 processes using com&swap. 

This structure has only one operation (c&s(v1,v2)) 

that compares the stored value with v1 and if they 

are the same v2 is stored instead. This operation 

always returns the value stored in the structure 

before the operation. 

If we assume that the stored initial value is ⊥, we can 

check again that the consensus is well implemented 

with this structure and it doesn´t violate the wait-free 

condition. 

 

We have seen how to implement consensus among two processes with different 

structures and among more than two with C&S. As aforementioned we can use the 

proposition proved by Lynch, Fisher and Patterson to prove by contradiction that these 

structures cannot be implemented using only registers but we need to prove the proposition. 

Proposition: There is no algorithm that implements consensus among two processes using only 

registers.  

 If we prove this for two processes we can extend it to any number of processes. We 

will try to prove by contradiction but firstly we have to give several definitions that are going 

to be used through the proof. We will assume that there is an algorithm A that implements 

consensus between two processes p1 and p2. 

  We say that a configuration is a state of the system in one instant. This state is 

composed by the state of each process and the registers that are used in the algorithm.  

 We obtain a new configuration by executing a step. A step is the minimal execution 

unit that changes something in the configuration. 

 The processes collaborate to carry out the consensus against the adversary. The 

adversary tries to confuse the processes to make them not achieve a consensus situation. We 

will play the role of the adversary to proof the proposition. The adversary will decide which 

process is going to execute one step, in other words, the order of step executions. 

 We say that a schedule is a sequence of process identifiers (let´s say for example p1, 

p2, p3…,pN) that establishes the order of steps executions. For example a schedule 

p1|p1|p1|p1|p2 means that p1 executes 4 steps consecutively and then p2 executes one. The 

goal of the adversary is setting up a schedule in order to make them fail with their aim. 

 Let “u” be 0 or 1, we say that a configuration C is “u”-valent if, no matter what 

happens between the processes, starting from C, “u” is the only decision possible. Otherwise 

we say that the configuration is bivalent, in other words, 0 or 1 can be decided. 

CONSENSUS BETWEEN  N 

PROCESSES USING COMP&SWAP 

Shared objects 
  C : Compare&Swap 
 

propose(vpropose(vpropose(vpropose(v iiii))))    

1 val:= C.c&s(⊥,vi) 

2 if(val = ⊥) then 

2.1   return(vi) 

else 

2.2   return(val) 



 Now, that we have the necessary elements and definitions we will divide the proof in 

two parts by formulating two lemmas and proving them. 

Lemma 1: There exists at least one initial bivalent configuration for the given algorithm A. 

Lemma 2: There exists an arbitrary long schedule that, from a given bivalent configuration, 

leads to another bivalent configuration. 

 Assuming that these two lemmas are correct, we can easily see that there is an infinite 

sequence of steps (schedule) from a bivalent configuration (that exists by lemma 1) and leads 

to another bivalent configuration, in other words, from a given state of the systems at least 

one process (or more) takes an infinite number of steps and doesn´t decide. It is a strong 

contradiction with the consensus validity because every process eventually decides a value and 

it proves that A cannot solve the consensus problem satisfying the wait-free condition. 

 Now if we prove these lemmas separately the job would be finished.   

Lemma 1 proof: Let´s assume that we have two processes p1 and p2 and an initial 

configuration represented as C(A,B) where A is going to be the value that the processes will 

decide if p1 proposes first and B the value that the processes will decide if p2 proposes first.  

We are going to prove that C(0,1) is a bivalent configuration. 

We start from C(0,0) and keep p2 stopped, so it doesn´t take any step. If the only one taking 

steps is p1, the value proposed and decided will be 0.   p1 cannot distinguish from C(0,0) and 

C(0,1) because under the same conditions (p2 stopped) p1 will decide always 0. So from C(0,1) 

p1 will also decide 0. 

With a similar reasoning, starting from C(1,1) and keeping p1 stopped, p2 is the only one that 

takes steps and at the end is going to decide 1. As before, p2 cannot distinguish from C(0,1) 

and C(1,1) because if p1 is stopped, p2 will always decide 1. So, from C(0,1) p2 will always 

decide 1. 

Thus, from C(0,1), and only depending on the schedule, the processes can decide 0 or 1. Then 

the configuration C(0,1) is bivalent. Lemma 1 is proved because there is at least one bivalent 

configuration. Actually we can use the same procedure to prove that C(1,0) is also bivalent. 

 

Lemma 2 proof: We are going to prove this lemma by contradiction. Let´s assume that S is the 

longest possible schedule such as, from a given initial bivalent configuration C, S(C) is bivalent 

but if one of the processes takes a step it becomes univalent. 

We are going to use the following representation pX(K) to say that the process pX 

takes a step from the configuration K. We are going to denote D as the bivalent configuration 

that we get after taking all the steps from the aforementioned schedule S, in other words, D is 

the last possible bivalent configuration. 



Now, let p0(D) 0-valent and p1(D) 1-valent, so they are univalent but different. Note 

that this can be a possible case and, if we reach a contradiction with this case, we will prove 

the lemma.  

We must remember that we are using only registers to implement the consensus with 

the algorithm A so taking a step, in other words going from D to pX(D), means that something 

is changing in the configuration, so, something is changing in one register. There are two 

possible operations with registers, read() and write(), but only write() modifies something. 

Thus, to change the state of the system, that is going from D to pX(D), the step taken must be a 

write access. Otherwise, the configuration obtained from pX(D) would still be bivalent.  

Apart from that we must take in account that both processes are accessing (modifying) 

the same register because if this is not the case, p0(p1(D)) is the same that p1(p0(D)) and one 

of them is 0-valent while the other is 1-valent. This is a contradiction.  

Finally, if we know that both processes are writing in the same register R we can see 

that for example p1(p0(D)) should be 0-valent but no matter what p0 does with R, p1 is going 

to overwrite the register and p1(p0(D)) will be the same than p1(D) so it will be 1-valent. This is 

the contradiction because p1 eventually decides 1 in both cases so p0(D) cannot be 0-valent. 

We can use the same argument to prove that p0(p1(D)) is the same that p0(D). 

 

CONCLUSION 

 We have learnt that we can implement different structures with registers but usually 

we have to use other things apart from them like local timestamps. In the first part of the 

current lesson we have experienced the difficulties of implementing a specific object using 

registers and the problems that we have to satisfy all the conditions given including atomicity 

and wait-freedom. 

In the last section of the lesson we have discovered a very useful way of proving that a 

given structure cannot be implemented using only registers. It´s true that it doesn´t give us the 

implementation of the structure but it is an easy way to discard trying to implement it using 

only registers. In other words, if we can implement consensus with the structure and at the 

same time we can implement the structure only with registers there is something wrong with 

one of both implementations. 


