
THE POWER AND THE LIMITATIONS OF REGISTERS

INTRODUCTION

 In the previous lectures we have learnt that, if the hardware doesn’t give us powerful

atomic wait-free tools, we can build them by ourselves. Concretely we have seen in class how

to implement different types of registers with different features and properties. We have been

able to build a MRMW multi-valued atomic register from SRSW binary safe registers.

 Now, following the same scheme, we wonder what other kind of structures we can

build with these powerful tools. We can reformulate the question in an even more general

way: Can we build any kind of structure using registers?

WHAT CAN WE IMPLEMENT?

COUNTER

 Let´s start with a simple structure which is the counter. We can define a counter as an

object that has two main operations:

- Read() = Returns the current value of the counter

- Inc() = Increments the value stored by the counter and returns “ok”

A first approach to implement a counter using only registers could be sharing a register

and implementing both operations by accessing that register as follows.

 This implementation could be a possibility but we

can easily check that it doesn´t respect the atomicity. Why?

Let´s try to prove it by giving an execution in which we

cannot establish a linearization point.

 Imagine a situation in which we have two concurrent

processes that try to increment the value by invoking the

operation inc() and a third process that reads the value of

the counter after the concurrent increments have finished.

read():read():read():read():

1 return(Reg.read())

inc():inc():inc():inc():

1 temp:= Reg.read()+1;

2 Reg.write(temp);

3 return(ok)

 We assume that the initial value of the counter is 0 so the reader should receive the

value 2 but this is not the case. The reader gets the value 1 as a result of two increments from

0. Let´s try to explain the result with a possible sequence of setps and the corresponding

diagram

1) p1 starts the inc() operation. It reads the value of the register in the statement 1

and start to increment and store it in the temp variable.

2) p3 starts the inc() while p1 is storing the value of the incremented value in the

temp variable. p3 gets the value of the register (still 0) in the statement 1.

3) p1 writes the value of the temp variable (1) inside the register in the statement 2.

Now the value stored in the shared register is 1.

4) p3 writes the value of its temp variable (1) inside the register in the statement 2.

The value of the register is overwritten with 1!!

5) Both, p1 and p3, returns ok and later p2 starts reading the value of the counter. p2

receives the value 1 as a result.

Now that we have proved that this implementation is not atomic, let´s think about

other one. Let´s try to do it with an array of registers (one register per process) in which each

process increments its own register when they want to increment. We assume that the array

is called Reg[1,..,n] where n is the number of processes.

Note that in this implementation the

reader must sum the value of all the

registers from the array. It is done in the

“for” loop in the statement 2.

Each register stores the number of

increments done by the corresponding

process.

With this implementation we can always

find a linearization point because each

register can only be modified by one

inc():inc():inc():inc():

1 Reg[i].write(Reg[i].read() +1);

2 return(ok)

read():read():read():read():

1 sum := 0;

2 for j = 1 to n do

2.1 sum := sum + Reg[j].read();

3 return(sum)

Read Inc & temp write

INC

Read() - 1

Read Inc & temp write

INC

p1

p2

p3

process so the situation that we had in the previous implementation will never exist. The

following diagram shows the linearization point established for the situation described before.

SNAPSHOT

 Now that we have implemented a counter with atomic registers, let´s try to implement

a more complex structure such as the snapshot. The snapshot is an object that represents an

array of values and has two main operations:

- Update(I,v): changes the state of the object. In this case, it writes the value v into

the register i.

- Scan(): returns the current state of the whole structure, in this case the values of

all the registers.

There is a quite easy implementation which we can think of. We can try to implement

it with a local array of registers per process but we can easily check that it is not valid since

each process updates only its own array. When a process scans the snapshot, it doesn´t

receive the modifications done by other processes. The right way to do it may be using shared

registers.

 We can think about using a shared array of registers and implement the operations like

follows.

Note that the update operation consists only

of writing the value in the corresponding register and

scan one consists only in recollecting the values from

all the registers and returning them.

 It seems to be a good implementation of a

wait-free snapshot but it is not an atomic one. Let´s

see the atomicity violation with the following

diagram.

 In the situation that we can see over these lines the scan returns the wrong values

while it occurs concurrently with two update operations. If we analyze it carefully we can

understand what is happening. The scan starts and when it collects the value of the second

register the first update has not modified it yet so it gets the old value (assuming that the

registers were initialized with value 0). Then, when the scan collects the value from the third

register, both updates, the one of p2 and the one of p3, have finished so p1 receives the new

scan():scan():scan():scan():

1 for j = 1 to N do

1.1 x[j] := Reg[j].read();

2 return(x)

update(i,v):update(i,v):update(i,v):update(i,v):

1 Reg[i].write(v); return(ok)

value of the third register. As a result the snapshot returns a mixture of old and new values

which can be regular but not atomic.

 Let´s try to solve the problem of the atomicity. From now, the scan algorithm that we

have used is going to be renamed as “collect”. We will implement the scan operation by doing

several collects. The idea is finding two equal consecutive collects. Then, we could say that we

have reached a stable situation and we can return the collect.

Despite the fact that it may not be a wait-free operation, we have to consider another

situation represented in the following graph in which we can find two consecutive collects that

are equal but there have been changes between them.

 There is a way of solving this problem that is using timestamps. One possible

implementation could be the following.

 Note that each process has a local timestamp

that is incremented in each update.

Now, we are sure that this is the

implementation of an atomic snapshot but we

have the problem that we mentioned before.

This is not a wait-free snapshot.

Imagine that there is someone (a process) that

updates the snapshot very fast repeatedly and

another process that wants to perform a scan

operation. The process that wants to do a scan

has to do at least two collects to check if there

have not been changes between them but it

never ends because the updater modify the

structure faster, so the one who performs the

scan never finds two equal collects.

scan():scan():scan():scan():

1 temp1 := self.collect();

2 while(true) do

2.1 temp2 := self.collect();

2.2 temp1 := temp2;

2.3 if (temp1 = temp2) then

return (temp1.val)

update(i,v):update(i,v):update(i,v):update(i,v):

1 ts := ts + 1;

2 Reg[i].write(v,ts);

3 return(ok)

Let´s try to solve this problem with the following idea. To avoid waiting infinitely for a

stable snapshot, we will make the updaters save a snapshot too. It will be like asking the

fastest to save the snapshot before finishing so the processes that want to scan only have to

look for two equal consecutive collects or for the last snapshot that has happened between

them.

 As before, we will use an array of registers but now each register will store the

corresponding value, the timestamp and a complete snapshot done by the corresponding

process in its last update operation. The implementation is the following.

Note that in each component of the array

there are three fields: value (1), timestamp (2)

and snapshot (3).

In the update operation each process has to

store the value, the timestamp (still local for

each process) and the full snapshot values

given by the scan operation.

In the statement 3.2 of the scan operation, the

process checks if there has been any changes

between the two collects (t2 and t3). If there

has not any change the values are returned (all

the components 1), otherwise the recent

snapshot is searched in the “for” statement

3.3.

Note that in the statement 3.3.1 we check for

a timestamp incremented by 2. This is because

we must be sure that if there is a concurrent

update with the scan operation and it finishes

before the scan operation, we take the new changes in account. With this implementation we

do not have the problem mentioned before of the wait-free violation.

WHAT WE CANNOT IMPLEMENT ONLY WITH REGISTERS

 We´ve seen in the previous pages that we can implement different structures using

registers combined in some cases with timestamps. But, what can we implement using ‘only’

registers?

 We can think about different structures like queues, Fetch&Inc, Test&Set, Comp&Swa,

etc. These are very powerful objects that we can try to implement with registers. The main

problem is what we have seen before while we were designing a counter or a snapshot. After

update(i,v):update(i,v):update(i,v):update(i,v):

1 ts := ts + 1;

2 Reg[i].write(v,ts,self.scan());

3 return(ok)

scan():scan():scan():scan():

1 t1 := self.collect();

2 t2:= t1;

3 while(true) do

3.1 t3:= self.collect();

3.2 if (t3 = t2) then

return (t3[1..N,1]);

3.3 for j = 1 to N do

3.3.1 if(t3[j,2] ≥ t1[j,2]+2) then

 return (t3[j,3])

3.4 t2 := t3

implementing them, we have to check conscientiously the validity of the structure and it is not

always easy. In this section we will use a shortcut to prove that we can (or we cannot)

implement a structure using only registers.

 The main idea will be that if we know that we cannot implement the consensus

between two or more processes using only register and we can do it with a given structure,

there will be a contradiction, so, that structure cannot be built using only registers.

 Let´s remember firstly the specification of the consensus.

- A consensus has one operation propose() that returns a value. When a process

receives a value v from this operation we say that the process has decided the

value v.

- No two processes decide differently.

- A decided value is a proposed one.

In 1985, Fisher, Lynch and Patterson published an article in which they proved that

consensus among any number of processes cannot be implemented using only registers. We

will use this proposition to prove by contradiction that some structures cannot be

implemented with registers because if we can do it, we would be able to implement the

consensus. Let´s see how we can implement the consensus using different structures.

In this example we build the operation propose using a

queue. A queue is an object that has two operations:

queue(v) that puts the value v in the last position of

the queue and dequeue() that returns the value stored

in the first position of the queue.

If we assume that we initialize the queue with values

{winner,looser} and we are using wait-free registers

and queues, then we can easily check that this is a

wait-free valid implementation since it satisfies all the

conditions of the consensus and there is no wait

statement in the implementation.

CONSENSUS BETWEEEN 2

PROCESSES USING A QUEUE

Shared objects
 R0, R1 : Registers
 Q : Queue

propose(vpropose(vpropose(vpropose(v iiii))))

1 Ri.write(vi)

2 item := Q.dequeue()

3 if item = winner

 return(vi)

4 return(R1-i.read())

Here, the consensus operation is implemented using

fetch&inc. This structure has only one operation that

returns the stored value incremented by one and at

the same time it stores that incremented value.

Assuming that the structure is initialized with the value

0 and following the reasoning carried in the previous

implementation we can check that this

implementation is wait-free and valid.

In this case, the propose() operation is implemented

with test&set that is a binary structure that holds one

bit. It has only one operation (test&set(), hence, the

name of the object) that returns the value of that bit

(0 or 1) and set the value of that bit to 1.

Assuming that the test&set is initialized to 0 and

following again the same reasoning than before we

can assure that this is also a wait-free implementation

that satisfies all the conditions established by the

consensus specifications.

CONSENSUS BETWEEN 2

PROCESSES USING FETCH&INC

Shared objects
 R0, R1 : Registers
 F : fetch&inc

propose(vpropose(vpropose(vpropose(v iiii))))

1 Ri.write(vi)

2 val := F.fetch&inc()

3 if(val = 1) then

3.1 return(vI)

 else

3.2 return(R1-i.read())

CONSENSUS BETWEEN 2

PROCESSES USING TEST&SET

Shared objects
 R0, R1 : Registers
 T : Test&Set

propose(vpropose(vpropose(vpropose(v iiii))))

1 Ri.write(vi)

2 val := T.test&set()

3 if(val = 0) then

3.1 return(vI)

 else

3.2 return(R1-i.read())

Finally we can easily implement also the consensus

between more than 2 processes using com&swap.

This structure has only one operation (c&s(v1,v2))

that compares the stored value with v1 and if they

are the same v2 is stored instead. This operation

always returns the value stored in the structure

before the operation.

If we assume that the stored initial value is ⊥, we can

check again that the consensus is well implemented

with this structure and it doesn´t violate the wait-free

condition.

We have seen how to implement consensus among two processes with different

structures and among more than two with C&S. As aforementioned we can use the

proposition proved by Lynch, Fisher and Patterson to prove by contradiction that these

structures cannot be implemented using only registers but we need to prove the proposition.

Proposition: There is no algorithm that implements consensus among two processes using only

registers.

 If we prove this for two processes we can extend it to any number of processes. We

will try to prove by contradiction but firstly we have to give several definitions that are going

to be used through the proof. We will assume that there is an algorithm A that implements

consensus between two processes p1 and p2.

 We say that a configuration is a state of the system in one instant. This state is

composed by the state of each process and the registers that are used in the algorithm.

 We obtain a new configuration by executing a step. A step is the minimal execution

unit that changes something in the configuration.

 The processes collaborate to carry out the consensus against the adversary. The

adversary tries to confuse the processes to make them not achieve a consensus situation. We

will play the role of the adversary to proof the proposition. The adversary will decide which

process is going to execute one step, in other words, the order of step executions.

 We say that a schedule is a sequence of process identifiers (let´s say for example p1,

p2, p3…,pN) that establishes the order of steps executions. For example a schedule

p1|p1|p1|p1|p2 means that p1 executes 4 steps consecutively and then p2 executes one. The

goal of the adversary is setting up a schedule in order to make them fail with their aim.

 Let “u” be 0 or 1, we say that a configuration C is “u”-valent if, no matter what

happens between the processes, starting from C, “u” is the only decision possible. Otherwise

we say that the configuration is bivalent, in other words, 0 or 1 can be decided.

CONSENSUS BETWEEN N

PROCESSES USING COMP&SWAP

Shared objects
 C : Compare&Swap

propose(vpropose(vpropose(vpropose(v iiii))))

1 val:= C.c&s(⊥,vi)

2 if(val = ⊥) then

2.1 return(vi)

else

2.2 return(val)

 Now, that we have the necessary elements and definitions we will divide the proof in

two parts by formulating two lemmas and proving them.

Lemma 1: There exists at least one initial bivalent configuration for the given algorithm A.

Lemma 2: There exists an arbitrary long schedule that, from a given bivalent configuration,

leads to another bivalent configuration.

 Assuming that these two lemmas are correct, we can easily see that there is an infinite

sequence of steps (schedule) from a bivalent configuration (that exists by lemma 1) and leads

to another bivalent configuration, in other words, from a given state of the systems at least

one process (or more) takes an infinite number of steps and doesn´t decide. It is a strong

contradiction with the consensus validity because every process eventually decides a value and

it proves that A cannot solve the consensus problem satisfying the wait-free condition.

 Now if we prove these lemmas separately the job would be finished.

Lemma 1 proof: Let´s assume that we have two processes p1 and p2 and an initial

configuration represented as C(A,B) where A is going to be the value that the processes will

decide if p1 proposes first and B the value that the processes will decide if p2 proposes first.

We are going to prove that C(0,1) is a bivalent configuration.

We start from C(0,0) and keep p2 stopped, so it doesn´t take any step. If the only one taking

steps is p1, the value proposed and decided will be 0. p1 cannot distinguish from C(0,0) and

C(0,1) because under the same conditions (p2 stopped) p1 will decide always 0. So from C(0,1)

p1 will also decide 0.

With a similar reasoning, starting from C(1,1) and keeping p1 stopped, p2 is the only one that

takes steps and at the end is going to decide 1. As before, p2 cannot distinguish from C(0,1)

and C(1,1) because if p1 is stopped, p2 will always decide 1. So, from C(0,1) p2 will always

decide 1.

Thus, from C(0,1), and only depending on the schedule, the processes can decide 0 or 1. Then

the configuration C(0,1) is bivalent. Lemma 1 is proved because there is at least one bivalent

configuration. Actually we can use the same procedure to prove that C(1,0) is also bivalent.

Lemma 2 proof: We are going to prove this lemma by contradiction. Let´s assume that S is the

longest possible schedule such as, from a given initial bivalent configuration C, S(C) is bivalent

but if one of the processes takes a step it becomes univalent.

We are going to use the following representation pX(K) to say that the process pX

takes a step from the configuration K. We are going to denote D as the bivalent configuration

that we get after taking all the steps from the aforementioned schedule S, in other words, D is

the last possible bivalent configuration.

Now, let p0(D) 0-valent and p1(D) 1-valent, so they are univalent but different. Note

that this can be a possible case and, if we reach a contradiction with this case, we will prove

the lemma.

We must remember that we are using only registers to implement the consensus with

the algorithm A so taking a step, in other words going from D to pX(D), means that something

is changing in the configuration, so, something is changing in one register. There are two

possible operations with registers, read() and write(), but only write() modifies something.

Thus, to change the state of the system, that is going from D to pX(D), the step taken must be a

write access. Otherwise, the configuration obtained from pX(D) would still be bivalent.

Apart from that we must take in account that both processes are accessing (modifying)

the same register because if this is not the case, p0(p1(D)) is the same that p1(p0(D)) and one

of them is 0-valent while the other is 1-valent. This is a contradiction.

Finally, if we know that both processes are writing in the same register R we can see

that for example p1(p0(D)) should be 0-valent but no matter what p0 does with R, p1 is going

to overwrite the register and p1(p0(D)) will be the same than p1(D) so it will be 1-valent. This is

the contradiction because p1 eventually decides 1 in both cases so p0(D) cannot be 0-valent.

We can use the same argument to prove that p0(p1(D)) is the same that p0(D).

CONCLUSION

 We have learnt that we can implement different structures with registers but usually

we have to use other things apart from them like local timestamps. In the first part of the

current lesson we have experienced the difficulties of implementing a specific object using

registers and the problems that we have to satisfy all the conditions given including atomicity

and wait-freedom.

In the last section of the lesson we have discovered a very useful way of proving that a

given structure cannot be implemented using only registers. It´s true that it doesn´t give us the

implementation of the structure but it is an easy way to discard trying to implement it using

only registers. In other words, if we can implement consensus with the structure and at the

same time we can implement the structure only with registers there is something wrong with

one of both implementations.

