
1 © R. Guerraoui

Set-Agreement
(Generalizing Consensus)

 R. Guerraoui

2

Consensus

 Every process invokes propose() with a
(proposed) input parameter value and eventually
return a (decided) value

 Processes propose each a value and agree on
one of those values

3

Consensus

Validity: every value decided has been proposed

Agreement: no two different values are decided

Termination: every correct process that proposes
a value eventually decides

4

Consensus

Consensus is impossible in an asynchronous
shared memory system (registers)

FLP (Dijkstra 2001): A read/write memory model
can remain in a bivalent state for an arbitrarily
long period if we have no control over the
scheduling of the processes

5

K-set-agreement

 Every process invokes propose() with a
(proposed) parameter value and eventually return
a (decided) value

Validity: every value decided has been proposed

Agreement: at most k different values are decided

Termination: every correct process eventually
decides

6

K-set-agreement

K-set agreement is wait-free impossible in an
asynchronous shared memory system (registers)
with k+1 processes

HS,BG,SZ 93 (Godel prize 2004)

7

K-set-agreement (Sperner)
1

2 3

Sperner’s Lemma: at least one triangle has three colors

2 3

8

K-set-agreement

K-set-agreement is wait-free impossible in a system
with n processes and k failures

BG: Any (colorless) task that can be solved k
resiliently in a system of n processes can be
solved wait free in a system of k+1 processes

9

Safe agreement

  A weak form of consensus with two functions
propose(v) and decide()

  When a process invokes propose(v) we say it
proposes (v)

  When a process returns v’ from decide() we say it
decides v

10

Safe agreement

  Validity: the value decided is one of the values
proposed

  Agreement: no two different values are decided

  Termination: (a) every correct process that
invokes propose() eventually returns from the
invocation and (b) every correct process that
invokes decide() eventually returns from the
invocation unless some process fails while
proposing

11

Safe agreement algorithm

propose(v)
  write v at level 1
  if there is a value at level 2, put v at level 0

  else write v at level 2

decide()
  wait until there is no value at level 1
  return the smallest value at level 2

12

From k-resilency to wait-freedom

propose(v)
  // for all j from 1 to n

  while(true)
  - mutex(propose_j(v))
  - v_j=decide()
  - return(v_j)

13

Consensus

 Consensus can be implemented with little
synchrony (eventual leader) – or with a strong
object (C&S)

Using consensus, processes can implement any
shared object: universal construction

14

K-set-agreement

 Leader(): returns a process such that eventually
the same correct process is returned to all

 Leader-k(): returns a subset of processes of size
k such that eventually the set is the same and
contains at least one correct process

15

Consensus algorithm
(functions)

   To simplify the presentation, we assume two
functions applied to Reg[1,..,N]

  highestTsp() returns the highest timestamp

among all elements Reg[1].T, Reg[2].T, ..,
Reg[N].T

  highestTspValue() returns the value with
the highest timestamp among all elements
Reg[1].V, Reg[2].V, .., Reg[N].V

16

Consensus algorithm

   propose(v): while(true)

   if leader() then

   Reg[i].T.write(ts);

   val := Reg[1,..,n].highestTspValue();

   if val = ⊥ then val := v;

   Reg[i].V.write(val,ts);

   if ts = Reg[1,..,n].highestTsp()

   then return(val)

   ts := ts + n

17

K-set-agreement
algorithm (functions)

   To simplify the presentation, we assume two
functions applied to Reg[1,..,N]

  highestTsp() returns the highest timestamp

among all elements Reg[1].T, Reg[2].T, ..,
Reg[N].T

  highestTspValue_k() returns the k values
with the highest timestamp among all
elements Reg[1].V, Reg[2].V, .., Reg[N].V

18

K-set-agreement

   propose(v): while(true)

   if leader_k() then

   Reg[i].T.write(ts);

   val := Reg[1,..,n].highestTspValue();

   if val = ⊥ then val := v;

   Reg[i].V.write(val,ts);

   if ts in Reg[1,..,n].highestTsp_k()

   then return(val)

   ts := ts + n

19

K-vector consensus (Afek et al)

  K-set agreement is equivalent to a k-vector
consensus (kVectCons) object

  Every process invokes kVectCons with
propose(kVect) and returns a vector of size k

20

K-vector consensus

  Validity: any non nil element returned at position i
has been proposed at position i

  Agreement: no two non-nil elements returned at
the same position are different

  Termination: Every correct process that proposes
eventually returns, and any vector returned has
exactly one non-nil element

21

From k-vector consensus to k-set

   propose_k(v):

   (vect) = propose_SkVect(v,v,..v)

   let v be the non nil value in vect

  return(v)

22

From k-set to k-vector

  We first go through a simple version of k-vector
consensus (kS-vector) where the processes
propose a value and return a consensus vector
(with the same properties as vector consensus)

23

From k-set to k-Svector

   propose_kSVect(v):

   v = propose_k(v)

   Reg[i].write(v);

   snap = Reg.snapshot()

   let j be the number of non-nil values in

snap and v the smallest value in snap

   return(j,v)

24

From k-set to k-vector

   propose_SkVect(v):

   v = propose_k(v)

   Reg[i].write(v);

   snap = Reg.snapshot()

   let j be the number of non-nil values in

snap and v the smallest value in snap

   return(j,v)

25

From k-Svector to k-vector

   propose_kVect(vect):

   (j,vect) = propose_kSVect(vect)

  return(j,vect(j))

26

Universality [Lamport 77]

  Using consensus, processes can implement any
shared object

27

Universality [Lamport 77]

  Assume an infinite list of requests available to
each process:
  commands accessed through next()

  Assume a state machine object of which each
process holds a copy:
  sM accessible through perform()

  Assume an infinite list of consensus objects
shared by the processes:
  Consensus accessed through next()

28

Universality [Lamport 77]

  Algorithm

  while(true)

  c = commands.next()
  cons = Consensus.next()

  c’ = cons.propose(c)
  sM.perform(c’)

29

Universality

  Safety (total order): if a process performs request
c without having performed c’, then no process
performs c’ without having performed c. This
follows from the use of consensus objects in the
same order by all the processes.

  Liveness: if at least one process is correct, then
the state machine progresses (executes an
infinite number of steps). This follows from the
liveness of consensus

30

What form of universality with set-
agreement?

What about several state machines
of which at least one progresses

31

Can we implement k < n state
machines?

Implementing k state machines
implies solving k-set agreement

32

K-set agreement

  K-set agreement: a function propose() through
which a process proposes a values and decides a
value

  Validity: the value decided is one of the values
proposed

  Agreement: at most k different values are decided
  Termination: every correct process that proposes

eventually decides

33

Implementing k state machines
implies solving k-set agreement

Are these problems equivalent?

Yes

34

Generalized universality

  Using consensus, processes can implement a
shared state machine that makes progress

  Using k-set agreement, processes can implement
k state machines of which at least one makes
progress

35

k state machines

  Assume k state machines, sM(i), each process
holding a copy of each one, accessible through
perform()

  Assume k infinite list of commands available to
each process:
  commands(j) accessed through next()

  Assume an infinite list of safe agreement objects
shared by the processes:
  sCons accessed through next()

36

Generalized universality (2)

  Use a list of k-vector consensus objects
(kVectCons) to execute the commands on the k
state machines

37

Universality [Lamport 77]

  Algorithm
  while(true)
  - c = commands.next()
  - cons = consensus.next()

  - c’ = cons.propose(c)
  - sM.perform(c’)

38

Generalized universality?

  Algorithm
  while(true)
  - for j = 1 to k: com(j) = commands(j).next()
  - kVectC = kVectCons.next()

  - (c,i) = kVectC.propose(com)
  - sM(i).perform(c)

39

Generalized universality?

  Algorithm
  while(true)
  - for j = 1 to k: com(j) = commands(j).next()
  - kVectC = kVectCons.next()

  - (c,i) = kVectC.propose(com)
  - Register.write(c,i)
  - sM(i).perform(c)
  - Read Registers and perform on sM(j’) if any

40

Abortable consensus

  When a process invokes propose(v) we say it
proposes (v)

  When a process returns (v,V) from propose() we
say it decides v; values in V are said to be
returned
  If V is empty, we say the process commits v.

Else we say it aborts with v because of V.

41

Abortable consensus

  Validity: any value returned has been proposed

  Agreement: if a value v is decided then no other
value is decided

  Termination: (a) every correct that proposes
eventually decides and (b) if all processes
propose the same value then no process aborts

42

Abortable consensus

propose(v)
  write v at level 1
  write V, the set of all values at level 1, at level 2
  If all V at level 2 are the same singleton v

  then return(v)
  else, if there is some singleton V = v, then
return (v,V) where V is the union of all values

 else return(v,V) where V is the union of all
values at level 2

43

Generalized universality

  Use a list of k-vector consensus objects
(kVectCons)

as well as …

  a list of k-vector abortable consensus
(kVectACons)

44

Generalized universality (step 0)

Algorithm
  newCom = commands.next()

  while(true)

  - kVectC = kVectCons.next()

  - kVectAC = kVectACons.next()

  …

45

Generalized universality (step 1)

Algorithm (cont’d)

  …

  (c,i) = kVectC.propose(newCom)

  …

46

Generalized universality (step1-2)

Algorithm (cont’d)
  …

  (c,i) = kVectC.propose(newCom)

  (vect(i),V(i)) = kVectAC(i).propose(c)

  …

47

Generalized universality (step1-2-2’)

Algorithm (cont’d)
  …

  (c,i) = kVectC.propose(newCom)

  (vect(i),V(i)) = kVectAC(i).propose(c)

  for j = 1 to k except i:
  (vect(j),V(j)) =

kVectAC(j).propose(newCom(j))
…

48

Generalized universality (step 3)

Algorithm (cont’d)
…
for i = 1 to k
  If V(i) is empty then

  sM(i).perform(vect(i))
  newCom(i) = commands(i).next()

  else
  newCom(i) = vect(i)

49

Generalized universality (step 3)

for i = 1 to k
  if V(i) empty then

  if vect(i) > newCom(i) then
  sM(i).perform(newCom(i))

  sM(i).perform(vect(i))
  newCom(i) = commands(i).next()

  else
  if some element v in V(i) > vect(i) then

  sM(i).perform(v)
  newCom(i) = commands(i).next()

50

Generalized universality (safety)

Total order: if a process performs command c on
state machine j without having performed c’ on j,
then no process performs c’ on j without having
performed c.

This follows from:

  Lemma 1: all commands executed come from
abortable consensus

  Lemma 2: abortable consensus objects are
executed in the same order by all processes

51

Generalized universality (liveness)

  Liveness: if one process is correct, then at least
one state machine progresses.

This follows from the following:

  Lemma 3: At least one abortable consensus
commits in every iteration

  Lemma 4: Every correct process executes a
command every two steps

