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Consensus 

 Every process invokes propose() with a 
(proposed) input parameter value and eventually 
return a (decided) value 

 Processes propose each a value and agree on 
one of those values 
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Consensus 

Validity: every value decided has been proposed 

Agreement: no two different values are decided 

Termination: every correct process that proposes 
a value eventually decides 
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Consensus 

Consensus is impossible in an asynchronous 
shared memory system (registers) 

FLP (Dijkstra 2001): A read/write memory model 
can remain in a bivalent state for an arbitrarily 
long period if we have no control over the 
scheduling of the processes 
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K-set-agreement 

 Every process invokes propose() with a 
(proposed) parameter value and eventually return 
a (decided) value 

Validity: every value decided has been proposed 

Agreement: at most k different values are decided 

Termination: every correct process eventually 
decides 
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K-set-agreement 

K-set agreement is wait-free impossible in an 
asynchronous shared memory system (registers) 
with k+1 processes  

HS,BG,SZ 93 (Godel prize 2004) 
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K-set-agreement (Sperner) 
1 

2 3 

Sperner’s Lemma: at least one triangle has three colors 

2 3 
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K-set-agreement 

K-set-agreement is wait-free impossible in a system 
with n processes and k failures 

BG: Any (colorless) task that can be solved k 
resiliently in a system of n processes can be 
solved wait free in a system of k+1 processes 
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Safe agreement 

  A weak form of consensus with two functions 
propose(v) and decide() 

  When a process invokes propose(v) we say it 
proposes (v) 

  When a process returns v’ from decide() we say it 
decides v 
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Safe agreement 

  Validity: the value decided is one of the values 
proposed 

  Agreement: no two different values are decided 

  Termination: (a) every correct process that 
invokes propose() eventually returns from the 
invocation and (b) every correct process that 
invokes decide() eventually returns from the 
invocation unless some process fails while 
proposing 
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Safe agreement algorithm 

propose(v) 
  write v at level 1 
  if there is a value at level 2, put v at level 0 

  else write v at level 2 

decide() 
  wait until there is no value at level 1 
  return the smallest value at level 2 
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From k-resilency to wait-freedom 

propose(v) 
  // for all j from 1 to n 

  while(true) 
  - mutex(propose_j(v)) 
  - v_j=decide() 
  - return(v_j) 
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Consensus 

 Consensus can be implemented with little 
synchrony (eventual leader) – or with a strong 
object (C&S) 

Using consensus, processes can implement any 
shared object: universal construction 
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K-set-agreement 

 Leader(): returns a process such that eventually 
the same correct process is returned to all 

 Leader-k(): returns a subset of processes of size 
k such that eventually the set is the same and 
contains at least one correct process 
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Consensus algorithm 
(functions) 


   To simplify the presentation, we assume two 
functions applied to Reg[1,..,N] 

  highestTsp() returns the highest timestamp 

among all elements Reg[1].T, Reg[2].T, .., 
Reg[N].T  


  highestTspValue() returns the value with 
the highest timestamp among all elements 
Reg[1].V, Reg[2].V, .., Reg[N].V 
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Consensus algorithm 


   propose(v): while(true) 

   if leader() then  


   Reg[i].T.write(ts); 

   val := Reg[1,..,n].highestTspValue(); 

   if val = ⊥ then val := v; 

   Reg[i].V.write(val,ts);  

   if ts = Reg[1,..,n].highestTsp()  

        then return(val) 

   ts := ts + n 
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K-set-agreement 
algorithm (functions) 


   To simplify the presentation, we assume two 
functions applied to Reg[1,..,N] 

  highestTsp() returns the highest timestamp 

among all elements Reg[1].T, Reg[2].T, .., 
Reg[N].T  


  highestTspValue_k() returns the k values 
with the highest timestamp among all 
elements Reg[1].V, Reg[2].V, .., Reg[N].V 
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K-set-agreement 


   propose(v): while(true) 

   if leader_k() then  


   Reg[i].T.write(ts); 

   val := Reg[1,..,n].highestTspValue(); 

   if val = ⊥ then val := v; 

   Reg[i].V.write(val,ts);  

   if ts in Reg[1,..,n].highestTsp_k()  

        then return(val) 

   ts := ts + n 
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K-vector consensus (Afek et al) 

  K-set agreement is equivalent to a k-vector 
consensus (kVectCons) object 

  Every process invokes kVectCons  with 
propose(kVect) and returns a vector of size k 
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K-vector consensus 

  Validity: any non nil element returned at position i 
has been proposed at position i 

  Agreement: no two non-nil elements returned at 
the same position are different 

  Termination: Every correct process that proposes 
eventually returns, and any vector returned has 
exactly one non-nil element 
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From k-vector consensus to k-set 


   propose_k(v): 

   (vect) = propose_SkVect(v,v,..v) 

   let v be the non nil value in vect 

  return(v) 
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From k-set to k-vector 

  We first go through a simple version of k-vector 
consensus (kS-vector) where the processes 
propose a value and return a consensus vector 
(with the same properties as vector consensus) 
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From k-set to k-Svector 


   propose_kSVect(v): 

   v = propose_k(v) 

   Reg[i].write(v); 

   snap = Reg.snapshot() 

   let j be the number of non-nil values in 

snap and v the smallest value in snap 

   return(j,v) 
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From k-set to k-vector 

   propose_SkVect(v): 


   v = propose_k(v) 

   Reg[i].write(v); 

   snap = Reg.snapshot() 

   let j be the number of non-nil values in 

snap and v the smallest value in snap 

   return(j,v) 
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From k-Svector to k-vector 


   propose_kVect(vect): 

   (j,vect) = propose_kSVect(vect) 

  return(j,vect(j)) 
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Universality [Lamport 77] 

  Using consensus, processes can implement any 
shared object 
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Universality [Lamport 77] 

  Assume an infinite list of requests available to 
each process:  
  commands accessed through next() 

  Assume a state machine object of which each 
process holds a copy: 
  sM accessible through perform() 

  Assume an infinite list of consensus objects 
shared by the processes: 
  Consensus accessed through next() 
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Universality [Lamport 77] 

  Algorithm 

  while(true) 

  c = commands.next()  
  cons = Consensus.next() 

  c’ = cons.propose(c) 
  sM.perform(c’) 
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Universality 

  Safety (total order): if a process performs request 
c without having performed c’, then no process 
performs c’ without having performed c. This 
follows from the use of consensus objects in the 
same order by all the processes.  

  Liveness: if at least one process is correct, then 
the state machine progresses (executes an 
infinite number of steps). This follows from the 
liveness of consensus 
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What form of universality with set-
agreement? 

What about several state machines 
of which at least one progresses 
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Can we implement k < n state 
machines? 

Implementing k state machines 
implies solving k-set agreement 
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K-set agreement 

  K-set agreement: a function propose() through 
which a process proposes a values and decides a 
value 

  Validity: the value decided is one of the values 
proposed 

  Agreement: at most k different values are decided 
  Termination: every correct process that proposes 

eventually decides 



33 

Implementing k state machines 
implies solving k-set agreement 

Are these problems equivalent? 

Yes 
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Generalized universality 

  Using consensus, processes can implement a 
shared state machine that makes progress 

  Using k-set agreement, processes can implement 
k state machines of which at least one makes 
progress 



35 

k state machines 

  Assume k state machines, sM(i), each process 
holding a copy of each one, accessible through 
perform() 

  Assume k infinite list of commands available to 
each process:  
  commands(j) accessed through next() 

  Assume an infinite list of safe agreement objects 
shared by the processes: 
  sCons accessed through next() 
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Generalized universality (2) 

  Use a list of k-vector consensus objects 
(kVectCons)  to execute the commands on the k 
state machines 
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Universality [Lamport 77] 

  Algorithm 
  while(true) 
  - c = commands.next()  
  - cons = consensus.next() 

  - c’ = cons.propose(c) 
  - sM.perform(c’) 
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Generalized universality? 

  Algorithm 
  while(true) 
  - for j = 1 to k: com(j) = commands(j).next() 
  - kVectC = kVectCons.next()  

  - (c,i) = kVectC.propose(com) 
  - sM(i).perform(c) 
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Generalized universality? 

  Algorithm 
  while(true) 
  - for j = 1 to k: com(j) = commands(j).next() 
  - kVectC = kVectCons.next()  

  - (c,i) = kVectC.propose(com) 
  - Register.write(c,i) 
  - sM(i).perform(c) 
  - Read Registers and perform on sM(j’) if any 
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Abortable consensus 

  When a process invokes propose(v) we say it 
proposes (v) 

  When a process returns (v,V) from propose() we 
say it decides v; values in V are said to be 
returned 
  If V is empty, we say the process commits v. 

Else we say it aborts with v because of V.  
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Abortable consensus 

  Validity: any value returned has been proposed 

  Agreement: if a value v is decided then no other 
value is decided 

  Termination: (a) every correct that proposes 
eventually decides and (b) if all processes 
propose the same value then no process aborts 
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Abortable consensus 

propose(v) 
  write v at level 1 
  write V, the set of all values at level 1, at level 2  
  If all V at level 2 are the same singleton v 

  then return(v) 
  else, if there is some singleton V = v, then  
return (v,V) where V is the union of all values 

  else return(v,V) where V is the union of all 
values at level 2  
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Generalized universality 

  Use a list of k-vector consensus objects 
(kVectCons)  

as well as … 

  a list of k-vector abortable consensus 
(kVectACons) 
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Generalized universality (step 0) 

Algorithm 
  newCom = commands.next() 

  while(true) 

  - kVectC = kVectCons.next() 

  - kVectAC = kVectACons.next() 

  … 
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Generalized universality (step 1) 

Algorithm (cont’d) 

  … 

  (c,i) = kVectC.propose(newCom) 

  … 
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Generalized universality (step1-2) 

Algorithm (cont’d) 
  … 

  (c,i) = kVectC.propose(newCom) 

  (vect(i),V(i)) = kVectAC(i).propose(c) 

  … 
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Generalized universality (step1-2-2’) 

Algorithm (cont’d) 
  … 

  (c,i) = kVectC.propose(newCom) 

  (vect(i),V(i)) = kVectAC(i).propose(c) 

  for j = 1 to k except i:  
  (vect(j),V(j)) = 

kVectAC(j).propose(newCom(j)) 
… 
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Generalized universality (step 3) 

Algorithm (cont’d) 
… 
for i = 1 to k 
  If  V(i) is empty then  

  sM(i).perform(vect(i)) 
  newCom(i) = commands(i).next() 

  else  
  newCom(i) = vect(i)  
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Generalized universality (step 3 ) 

for i = 1 to k 
  if V(i) empty  then  

  if vect(i) > newCom(i) then  
  sM(i).perform(newCom(i)) 

  sM(i).perform(vect(i)) 
  newCom(i) = commands(i).next() 

  else  
  if some element v in V(i) > vect(i) then 

  sM(i).perform(v) 
  newCom(i) = commands(i).next()  
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Generalized universality (safety) 

Total order: if a process performs command c on 
state machine j without having performed c’ on j, 
then no process performs c’ on j without having 
performed c.  

This follows from: 

  Lemma 1: all commands executed come from 
abortable consensus   

  Lemma 2: abortable consensus objects are 
executed in the same order by all processes 
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Generalized universality (liveness) 

  Liveness: if one process is correct, then at least 
one state machine progresses.  

This follows from the following: 

  Lemma 3: At least one abortable consensus 
commits in every iteration 

  Lemma 4: Every correct process executes a 
command every two steps 


