Writing while reading registers

R. Guerraoui
Distributed Programming Laboratory

© R. Guerraoui, M. Vukolic, S. Gilbert

When readers need to write?

Register Implementation (readers don't write):

Read()

1: $x:=\operatorname{read}(. .$.
2: y:=read(...)
3: return(x)

Atomic Register

SRSW regular \Rightarrow SRSW atomic

- Reg: SRSW register
- t, x : local variables

Read()

1. $\left(\mathrm{t}^{\prime}, \mathrm{x}^{\prime}\right)=$ Reg.read ()
2. if $\left(t^{\prime}>t\right)$ then $t:=t^{\prime} ; x:=x^{\prime}$
3. return (x)

Write(v)

1. $\mathrm{t}:=\mathrm{t}+1$
2. Reg.write(v,t);

SRSW regular \Rightarrow SRSW atomic

r Not for multiple readers...
r Not without timestamps...

- variable t representing logical time
\checkmark What is behind these limitations?

Bound on SWSR atomic register implementations

r Theorem 1:
There is no wait-free algorithm that:

- Implements a SWSR atomic register.
- Uses a finite number of SWSR regular registers.
- The registers can be written only by the writer (of the atomic register).

The proof

r Assume an algorithm... show contradiction
r Replace any number of SWSR regular registers with a single one (w.l.o.g) - reg

The Proof (cont'd)

r Consider an execution in which the writer alternates writing 0 and 1 infinitely many times.

- reg can assume finite number of values.
- There is a value v0 that appears infinitely many times in reg after a Write(0).

The Proof (cont'd)

r Consider the subset of Write(1) ops starting when reg is in state v 0 .

- reg can assume finite number of values after Write(1).
- There is a value vn that appears infinitely many times in reg after a Write(1).

r The state of reg changes infinitely many times from v0 to vn when Write(1) occurs.

The Proof (cont'd)

Similarily (generalization):
There must exist values $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}$, such that
a) v_{0} is the value of reg before infinite Write(1) ops.
b) v_{n} is the value of reg after infinite Write(1) ops.
c) $\forall \mathrm{i}<\mathrm{n}$: reg changes infinitely many times from v_{i} to v_{i+1} during infinite Write(1) ops.

reg \square

Execution 1

The Proof (cont'd)

Read() returns 0

The Proof (cont'd)

Read() returns 1

The Proof (cont'd)

Execution 2

The Proof (cont'd)

There is a minimum $i(0<i<=n)$ such that: If the reader always reads v_{i}, then:

- The reader returns 1.

If the reader always reads $\mathrm{v}_{\mathrm{i}-1}$, then:

- The reader returns 0 .

The Proof (end)

$\boldsymbol{r e g} ?$

The Proof (cont'd)

If readers write (and writers read), executions 1 and 2 do not have to be indistinguishable to the reader. Execution 1 (shown in this slide) has an infinite no. of writes. We could imagine the algorithm in which the reader writes something (say a bit) before the first low-level read. This is read by writer at the end of Write(1). The reader does not change this bit before next Read.

Then, the writer simply writes some aditional bit at the begining of the next change from 0 to 1 . Hence, reader reads this in the second low-level read along with vi. This makes the reader distinguish execution 1 from execution 2.

Summary

\checkmark The reader needs to write in order to reduce the space complexity:
r Reduce space from unbounded to bounded.
Key requirement: reader-writer communication
r The (bounded) algorithm will come a bit later

Single to Multi Reader: SRSW atomic to MRSW atomic

Write(v)

1. $\mathrm{t} 1:=\mathrm{t} 1+1$
2. $\underline{\text { for }} \mathrm{j}=1$ to N
3. WReg.write($\mathrm{v}, \mathrm{t} 1$)

Single to Multi Reader: SRSW atomic to MRSW atomic

Read()

1. $\underline{\text { for }} \mathrm{j}=1$ to N do
2. (t[j], x[j]) := RReg[i, j].read()
3. $(\mathrm{t}[0], \mathrm{x}[0])=$ WReg[i].read()
4. $(\mathrm{t}, \mathrm{x}):=$ highest(t[..], $\mathrm{x}[.]$.
5. for $\mathrm{j}=1$ to N do
6. RReg[j, i].write(t, x)
7. return (x)

Single to Multi Reader: SRSW atomic to MRSW atomic

r The transformation would not work for multiple writers
\checkmark The transformation would not work if the readers do not communicate (i.e., if a reader does not write)

Bound on SWMR atomic register implementations

r Theorem 2:
\checkmark There is no wait-free algorithm that implements a (SWMR) atomic register using any number of (SWSR) atomic registers that can all be written by the writer (of the SWMR atomic register).

Bound on SWMR atomic register implementations

r Theorem 2:
There is no wait-free algorithm that:

- Implements a SWMR atomic register.
- Uses any number of SWSR atomic registers.
- The registers can be written only by the writer (of the atomic register).

The proof

r We assume such an algorithm and show contradiction
Denote the SWMR register by reg*
\checkmark We assume 2 readers p 1 and p 2 .
The writer is pw.

The proof

\checkmark We replace all atomic registers read by p1 by a single one - reg1.
\checkmark We replace all atomic registers read by p2 by a single one - reg2

The proof (cont'd)

r Consider the first write of 1 into reg*

This consists of a number of low-level writes w1 to wk into reg1/reg2

The proof (cont'd)

$r \forall \mathrm{i} \in\{1,2\}, \exists \mathrm{j}_{\mathrm{i}}: 1 \leq \mathrm{j}_{\mathrm{i}} \leq \mathrm{k}:$

$$
\forall j<\mathrm{j}_{\mathrm{i}}: \mathrm{v}_{\mathrm{j}}^{\mathrm{i}}=0 \text { and } \forall \mathrm{j} \geq \mathrm{j}_{\mathrm{i}}: v_{\mathrm{j}}^{\mathrm{i}}=1
$$

r Observe that j_{1} does not equal j_{2}
$r \mathrm{w}_{\mathrm{ji}}$ must write to regi

The proof (end)

r w.l.o.g. assume $j_{1}<j_{2}$

Write(1)

The proof (end)

r w.l.o.g. assume $j_{1}<j_{2}$

If readers write, the proof is simple to break. Assume that the writer writes a timestamp along the value. The reader p1 would simply writeback the timestamp/value pair to a dedicated SWSR atomic register read by p2 (as in the transformation seen in the class).

Summary

r The readers need to write in implementations of:

- multi-reader
- wait-free
- atomic
(out of weaker base objects)
r Even when the available space is unbounded
r Same idea:
- Implementing SWMR atomic from SWMR regular
r We can implement SWMR regular from SWSR atomic

From safe to atomic: one bit

Wait-free implementation one SWSR atomic bit
r Brute force (the reader does not write):

1. SWSR safe to SWSR regular bit
r Simple
2. SWSR regular bit to SWMR multivalued
$r \mathrm{O}(\mathrm{N})$ in space and time
3. SWMR regular to SWSR atomic
r Timestamps (unbounded space)

From safe to atomic: one bit

Wait-free implementation of one SWSR atomic bit

Something different:

The reader should write!

Aim for $\mathrm{O}(1)$ complexity in space and in time

How many safe bits?

r A single one will not be enough (Theorem 1)
\checkmark We need at least:

- one for writer to write value
- one for reader will write
r Can we do it with only 2 SWSR safe bits?
rNo...
r Assume two bits
- V, written by the writer and read by the reader
- R, written by the reader and read by the wisiter

r After Write(1) V must equal 1
r Assuming that the initial value is 0
r Dual if the initial value is 1
\checkmark After Write(0) V must equal 0

2 safe bits are not enough Write(1)

r The proof holds regardless of the number of bits in which the reader writes
r The writer needs (at least) 2 bits for himself

3 bits are enough (Tromp's algorithm)

$r 2$ bits owned (written) by the writer
$r \mathrm{~V}$ (for a value) and W (control flag)
$r 1$ bit owned by the reader (R - control flag)
\checkmark When the writer executes:
r if $W=R$ then $\{\ldots\}$
r We mean:

1) $r:=\operatorname{read}(R)$
2) if $(W=r)$ then ...
$r r$ is a local variable
r A copy of W is stored localy

Tromp's algorithm

Write(v)
 1 : if old $\neq \mathrm{v}$ then
 2: change(V)
 2: if $(W=R)$ then
 3: change(W)
 4: old := v

Tromp's algorithm

Tromp's algorithm

Write(v)
 1: change(V)
 2: if $(W=R)$ then
 3: change(W)

- Handshaking
$W \neq R \Leftrightarrow$ there is a new value
$\mathrm{W}=\mathrm{R} \Leftrightarrow$ no new values

Read()
1: if $(W=R)$ then return(v)
$2: x:=r e a d(V)$
3: if $(W \neq R)$ then change (R)
4: v := read V
5: if $(W=R)$ then return(v)
6: $v:=\operatorname{read}(V)$
7: return(x)

Correctness

r Liveness - straigthforward

Safety - a bit more difficult

Atomicity (review)

For every execution:

- We can assign a serialization point for each operation.
- Each operation takes place instantaneously at its serialization point.

Atomicity (conditions)

For every execution: There exists a partial order of operations such that:

1. All Write operations are ordered.
2. Each Read operation is ordered with respect to all write ops.
3. Each Read operation returns the value of the immediately preceding Write operation.
4. If op1 precedes op2, then not(op2 < op1) in the ordering.

Atomicity (conditions)

For every execution:
There exists a partial order of operations such that:

1. All Write operations are ordered.
2. Each Read operation is ordered with respect to all write ops.
3. Each Read operation returns the value of the immediately preceding Write operation.
4. If op1 precedes op2, then $\operatorname{not}(\mathrm{op} 2<\mathrm{op} 1)$ in the ordering.

Define ordering:

1. Writes are ordered as they are issued.
2. Reads:

- Find last "Read (V) " that precedes return for Read.
- Find "Write(V)" that wrote that value.
- Write that contains "Write(V)" ordered before Read.

Atomicity (conditions)

For every execution:
There exists a partial order of operations such that:

1. All Write operations are ordered.
2. Each Read operation is ordered with respect to all Write ops.
3. Each Read operation returns the value of the immediately preceding Write operation.
4. If op1 precedes op2, then $\operatorname{not}(o p 2<o p 1)$ in the ordering.

Define ordering:

1. Writes are (trivially) ordered.
2. Reads:

- Find last "Read (V) " that precedes return for Read.
- Find "Write(V)" that wrote that value.
- Write that contains "Write(V)" ordered before Read.

Correctness 1 (Safety)

r Each Read operation returns the value of the immediately preceding Write operation.

Correctness 1

r Each Read operation returns the value of the immediately preceding Write operation.

- Assume for the sake of contradiction...

Correctness 1

Case 1: Read op returns on line 5 or 7

- Returns v or x read during Read op.
- V acts like a regular register.
- read(V) can not return old value.

Contradiction...

Correctness 1

r Case 2: Read op returns on line 1.

- Returns v from previous Read op: ($\mathrm{R}=\mathrm{W}$)
- But, after write operation, ($\mathrm{R} \neq \mathrm{W}$).
- So there must have been a previous Read.
- And that Read must have "Read(V)"

Contradiction...

Correctness 2 (Regularity)

\checkmark A Read returns the value of the concurrent Write or a previous Write.
r The writer is only allowed to access the shared memory to change the value of the implemented register. If a read operation is concurrent with a write that changes the value, it is allowed to return both 0 and 1

Correctness 3 (Atomicity)

r Lemma: If Read r1 precedes r2 and ri returns the value written by the Write vi $(i=1 . .2)$, then $\mathrm{v} 1=\mathrm{v} 2$ or v 1 precedes v 2
r Proof: Suppose v2 precedes v1 (*)
r r1 does not return the initial value (no Write precedes the initial Write)
r r2 returns some value read by some low-level read from V
Otherwise r2 returns the same value as r1 (the initial value)
See line 1 of reader's code

Correctness 3

r If Read r 1 precedes Read r 2 , then not($\mathrm{r} 2<\mathrm{r} 1$).

- Assume for the sake of contradiction...

Correctness 3

r Let $\rho \mathrm{i}$ be the read(V) returned by ri $(\mathrm{i}=1 . .2)$.
r Claim 1: $\rho 1$ precedes $\rho 2$
$r \rho 1 \in r 1$ or some Read that precedes $r 1$.
r If $\rho 2 \in r 2$, then Claim 1 is trivial (since $r 1 \rightarrow r 2$).

Correctness 3

r Let $\rho \mathrm{i}$ be the read (V) returned by ri $(\mathrm{i}=1 . .2)$.
r Claim 1: $\rho 1$ precedes $\rho 2$
$r \rho 1 \in r 1$ or some Read that precedes $r 1$.
\checkmark If $\rho 2 \notin r 2$, then r2 returns in line 1:

- Observe that $\rho 1 \neq \rho 2$.
r If $\rho 2 \rightarrow r 1$ then $r 1$ does not change v
rr1 returns in line 1 and $\rho 1=\rho 2$
r If $\rho 2 \in r 1$ then:
$r \rho 1$ is a read (V) in line 2 or 4 of r 1 or earlier.
$\rho 2$ is a read (V) in line 4 or 6 of r1 or later.

Correctness 3

Claim 2: There is a change (V) operation by writer that started before $\rho 1$ finished and finished after $\rho 2$ started

Correctness 3

r Claim 3: Every "Read(W)" operation by the reader between $\rho 1$ and $\rho 2$ returns the same value.
Proof: The writer is busy changing V (Claim 2).

Correctness 3

r There are 3 exhaustive cases
r (i) $\rho 1$ is $x:=\operatorname{read}(V)$ (line 2)
$r \rho 1 \in r 1$ and $r 1$ returns in line $7\left({ }^{* *}\right)$
$r 2$ subcases:
$r(a) \rho 2$ is the read in line 4 of $r 1$
Then r1 does not execute line 6
rr1 returns in line 5 (contradicts (**))!
(b) $\rho 2$ is some later read

By Claim 3, $W=R$ in line 5 of $r 1$
$r \mathrm{r} 1$ returns in line 5 (contradicts $\left({ }^{* *}\right)$)!

Correctness 3

r There are 3 exhaustive cases
r (ii) $\rho 1$ is $v:=$ read V (line 4)
rr1 must return in line 5
After finding W=R
By Claim 3, W is not changed before $\rho 2$ (i.e., some read V) is invoked
But there is no subsequent read of V , (nor change of R), before $W \neq R$ (line 1)
ri.e., there is no new read of v before W is changed $\Rightarrow \rho 1=\rho 2-$ a contradiction w. Claim 1, (*)

Correctness 3

r There are 3 exhaustive cases
r (iii) $\rho 1$ is $v:=$ read V (line 6)
$r \mathrm{r} 1$ is a subsequent read that returns in line 1
Otherwise v is overwritten in line 4
rr1 finds $W=R$ in line 1
r By Claim 3, W is not changed before $\rho 2$ (i.e., some read V) is invoked
But there is no subsequent read of V , (nor change of R), before $W \neq R$ (line 1)
ri.e., as in case (ii) $\Rightarrow \rho 1=\rho 2-a$ contradiction w. Claim 1, (*)

Tromp's algorithm

Write(v)
 1: change(V)
 2: if $(W=R)$ then
 3: change(W)

- Handshaking
$W \neq R \Leftrightarrow$ there is a new value
$W=R \Leftrightarrow$ no new values

Read()
1: if $(W=R)$ then return(v)
$2: x:=r e a d(V)$
3: if $(W \neq R)$ then change (R)
4: v := read V
5: if $(W=R)$ then return(v)
6: $v:=\operatorname{read}(\mathrm{V})$
7: return(x)

Tromp's algorithm

Write(v)
 1: change(V)
 2: if $(W=R)$ then
 3: change(W)

- Handshaking
$W \neq R \Leftrightarrow$ there is a new value
$W=R \Leftrightarrow$ no new values

Read()
1: if $(W=R)$ then return(v)
$2: x:=r e a d(V)$
3: 羊 $(W \neq R)$ then change (R)
4: v := read V
5: if $(W=R)$ then return(v)
6: $v:=\operatorname{read}(\mathrm{V})$
7: return(x)

Condition in line 3 ?

r There are 3 exhaustive cases
r (i) $\rho 1$ is $x:=$ read V (line 2)
$\rho \rho 1 \in r 1$ and $r 1$ returns in line $7\left({ }^{* *}\right)$
$r 2$ subcases:
$r(a) \rho 2$ is the read in line 4 of $r 1$
Then r1 does not execute line 6
$r \mathrm{r} 1$ returns in line 5 (contradicts (**))!
(b) $\rho 2$ is some later read

By Claim 3, W=R in line 5 of $r 1$
$r \mathrm{r} 1$ returns in line 5 (contradicts $\left({ }^{* *}\right)$)!

Condition in line 3 ?

Tromp's algorithm

Write(v)
 1: change(V)
 2: if $(W=R)$ then
 3: change(W)

- Handshaking
$W \neq R \Leftrightarrow$ there is a new value
$\mathrm{W}=\mathrm{R} \Leftrightarrow$ no new values

Read()
1: if $(W=R)$ then return(v)
$2: x:=r e a d(V)$
3: if $(W \neq R)$ then change (R)
4: v := read V
5: if $(W=R)$ then return (v)
$6: *:=\operatorname{read}(V)$
7: return(x)

Removing line 6?

Removing line 6?

