Solution for Exercise 10

Concurrent Algorithms 2010

I(I’ﬂ-

EEEEEEEEEEEEEEEEE




Problem |



Problem |

STM

Cx start
tx commilt
tx read

tx write



Problem |

STM M
Cx start
tx commilt alloc(size)
tx read free (ptr)

tx_write



Problem |

STM =+ M
Cx start
tx commilt alloc(size)
tx read free (ptr)

tx_write



Problem

STM,

Cx start
tx commit
tx read
tx write
tx alloc
tx free



Solution

® Rollback alloc and free on abort
e free rollsback alloc

® maintain a list of allocated memory
® on rollback free everything
e Cannot rollback free
® maintain a list of deallocated memory

® on commit free everything



Algorithm



W N

Algorithm

: tx start ()

tx start old()

~alloc log =
~dealloc 1log

{}

{}



W N

Algorithm

tx alloc(size)
ptr = alloc(size)
add alloc log(ptr)
return ptr



Algorithm

1: tx free(ptr)
2 add dealloc log(ptr)



W N -

Algorithm

tx commit ()
tx commit old ()
for ptr 1n dealloc log
free (ptr)



O b W o -

Algorithm

rollback ()
rollback old no jmp ()
for ptr 1n alloc log
free (ptr)
rollback jmp ()



Assumptions

® STM implementation cannot access
deallocated data

® true for visible reads

® not true for invisible reads (SwissTM)



QO J O U1 >

11:
12:

Swiss TM read

version := read(r lock)
while true
1f version = 0xl1
version := read(r lock)
continue
value := read(addr)
version2 := read(r lock)
1f version = version’? break

version := version?’



Solution

® Postpone deallocation further

® until all live transactions have observed
changes by deallocating transaction

® SwissTM

® yse commit counter



O &0 J oy U1 & w N

Algorithm

tx commit ()
ts = tx commit old()

for ptr 1n dealloc log
add dealloc old log(ptr,ts)

for entry i1n dealloc old log
for tx 1n concurrent tx
1f tx. valid ts < entry.ts
continue
free(entry.ptr)
remove dealloc old log(entry)




Problem Il



Problem Il

Lock

acqulire
release



Problem Il

STM

tx start
tx commit
tx read
tx write



Solution

® Acquire lock on start

® Release lock on commit



Algorithm



Algorithm

1: tx start()
2 Lock.acquire ()



Algorithm

1: tx commit ()
2 Lock.release ()



Algorithm

1l: tx read(addr)
2 return read (addr)



Algorithm

1: tx write (addr,val)
2 write (addr,val)



Think about this

How to efficiently implement tx alloc
and tx free in this implementation?



Questions!



