
A Solution for Exercise 6

EPFL, LPD

Concurrent Algorithms 2010

(EPFL, LPD) A Solution for Exercise 6 Concurrent Algorithms 2010 1 / 6



The big picture

Wait-free implementation B of shared object O

Obstruction-free
algorithm A

Contention manager

Failure detector ♦P

try/resign

suspected

(EPFL, LPD) A Solution for Exercise 6 Concurrent Algorithms 2010 2 / 6



Assumptions

Algorithm A must communicate with a contention manager⇒calls try
and resign:

tryi is called always before an operation starts, and possibly many
times within the operation,
resigni is called only immediately before the operation returns,
If a process pi is correct but never returns from an operation then
pi calls tryi infinitely many times.

(EPFL, LPD) A Solution for Exercise 6 Concurrent Algorithms 2010 3 / 6



Failure detector ♦P

An eventually perfect failure detector ♦P maintains, at every process
pi , a set suspectedi of suspected processes. ♦P guarantees that
eventually, after some unknown time, the following conditions are
satisfied:

1 Every correct process permanently suspects every crashed
process,

2 No correct process is ever suspected by any correct process.

(EPFL, LPD) A Solution for Exercise 6 Concurrent Algorithms 2010 4 / 6



A wait-free contention manager

uses: T [1, . . . , N]—array of registers
initially: T [1, . . . , N]← ⊥

upon tryi do
if T [i] = ⊥ then T [i]← GetTimestamp()
repeat

sacti ← {pj | T [j] 6= ⊥ ∧ pj /∈ ♦P.suspectedi }
leaderi ← the process in sacti with the lowest
timestamp T [leaderi ]

until leaderi = pi

upon resigni do
T [i]← ⊥

(EPFL, LPD) A Solution for Exercise 6 Concurrent Algorithms 2010 5 / 6



Properties of GetTimestamp()

Timestamps:
Have to be unique
Should also be increasing

A solution: weak counter (from registers) | process id

(EPFL, LPD) A Solution for Exercise 6 Concurrent Algorithms 2010 6 / 6


