Concurrent Algorithms 2010: Exercise 6

Let A be an obstruction-free algorithm implementing some shared object O with operations op, .. ., 0p;..
The goal of the exercise is to transform algorithm A into a wait-free algorithm B that also implements
shared object O (i.e., the operations op, ..., 0p,). We will do it by implementing an abstraction called a
contention manager, using an eventually perfect failure detector ¢’P and atomic registers.

Wait-free implementation B of shared object O

Obstruction-free | (ry/resign , suspected -
algorithm A —” Contention manager }—’{ Failure detector P ‘

A contention manager implements two operations: try; and resign; (invoked by process p;). These
operations do not take any arguments and always return ok. A contention manager resolves contention,
and thus guarantees wait-freedom, by delaying some processes that have invoked try;. In other words,
when a process p; invokes try;, a contention manager can decide when to return from the operation—it
can delay the response of try; for an arbitrarily long time.

We assume that algorithm A uses the interface of the contention manager, i.e., that it invokes try;
and resign;. More precisely, every time an operation op,,, implemented by A, is executed by a process
pi, the following conditions are satisfied:

1. try; is called always before the first step of the implementation of op,, is executed (i.e., just after
op,, is invoked), and possibly many times while op,, is being executed,

2. resign; is called only immediately after the last step of the implementation of op,, is executed (i.e.,
just before the result of op,, is returned),

3. If process p; is correct but never returns from operation op,, (i.e., the implementation of the oper-
ation is executed infinitely long), then p; calls try; infinitely many times.

Moreover, every time process p; invokes try; or resign;, p; waits until try, /resign, returns before execut-
ing any further steps of algorithm A.

An eventually perfect failure detector (P maintains, at every process p;, a set suspected; of suspected
processes. (P guarantees that eventually, after some unknown time, the following conditions are sat-
isfied:

1. Every correct process permanently suspects every crashed process,
2. No correct process is ever suspected by any correct process.

This means that suspected; can be arbitrary and different at every process for any finite period of time.
However, eventually, at every correct process p;, set suspected; will be permanently equal to the set of
processes that have crashed.

Your task is to implement a contention manager C (i.e., the operations try; and resign;, for every
process p;) that converts obstruction-free algorithm A into wait-free algorithm B, and that uses only
atomic registers and failure detector OP.



