
Concurrent Computing

Rachid Guerraoui Petr Kuznetsov

December 17, 2014

2

Contents

1 Introduction 9
1.1 A broad picture: the concurrency revolution . 9
1.2 The topic: shared objects . 10
1.3 Linearizability . 11
1.4 Wait-freedom . 12
1.5 Object implementation . 13
1.6 Reducibility . 14
1.7 Organization . 14
1.8 Bibliographical notes . 15

I Correctness: safety and liveness 17

2 Linearizability 19
2.1 Introduction . 19
2.2 The Players . 20

2.2.1 Processes . 20
2.2.2 Objects . 21
2.2.3 Histories . 22
2.2.4 Sequential histories . 24

2.3 Linearizability . 24
2.3.1 Legal history . 25
2.3.2 Linearizability of complete histories . 25
2.3.3 Linearizability of incomplete histories . 26

2.4 Linearizability is a compositional property . 28
2.5 Linearizability is nonblocking . 29
2.6 Linearizability is a safety propery . 29
2.7 Alternatives to linearizability . 31

2.7.1 Sequential consistency . 32
2.7.2 Serializability . 33

2.8 Summary . 34
2.9 Bibliographic notes . 34

3

3 Wait-freedom 35
3.1 Introduction . 35
3.2 Implementation . 35

3.2.1 High-level object and low-level object . 36
3.2.2 Zooming into histories . 36

3.3 Progress properties . 37
3.3.1 Solo, partial and global termination . 38
3.3.2 Bounded termination . 39
3.3.3 Other progress properties . 39

3.4 Linearizability and wait-freedom . 39
3.4.1 A simple example . 39
3.4.2 A more sophisticated example . 41
3.4.3 Liveness . 42

3.5 Summary . 43
3.6 Exercises . 43

II Registers 45

4 Definitions 47
4.1 The many faces of a register . 47
4.2 Safe, regular and atomic registers . 48

4.2.1 Safe registers . 48
4.2.2 Regular registers . 49
4.2.3 Atomic registers . 50
4.2.4 Regularity and atomicity: a reading function . 50

5 Bounded register transformations 53
5.1 Two simple bounded transformations . 54

5.1.1 Safe/regular registers: from single reader to multiple readers 54
5.1.2 Binary multi-reader registers: from safe to regular 55

5.2 From binary to b-valued registers . 56
5.2.1 From safe bits to safe b-valued registers . 56
5.2.2 From regular bits to regular b-valued registers . 57
5.2.3 From atomic bits to atomic b-valued registers . 59

5.3 Bibliographic notes . 61
5.4 Exercises . 61

6 Implementing an atomic bit: an optimal construction 63
6.1 Introduction . 63
6.2 A Lower Bound Theorem . 63

6.2.1 Digests and Sequences of Writes . 64
6.2.2 The Impossibility Result and the Lower Bound . 65

6.3 From three safe bits to an atomic bit . 67
6.3.1 Base architecture of the construction . 67
6.3.2 Handshaking mechanism and the write operation 67

4

6.3.3 An incremental construction of the read operation 68
6.3.4 Proof of the construction . 71
6.3.5 Cost of the algorithms . 74

6.4 Bibliographic notes . 74

7 Unbounded register constructions 75
7.0.1 1W1R registers: From unbounded regular to atomic 75
7.0.2 Atomic registers: from unbounded 1W1R to 1WMR 76
7.0.3 Atomic registers: from unbounded 1WMR to MWMR 78

7.1 Concluding remark . 79
7.2 Bibliographic notes . 79
7.3 Exercises . 79

III Snapshots 81

8 Collect and Snapshot objects 83
8.1 Collect object . 83

8.1.1 Definition . 83
8.1.2 A collect object has no sequential specification . 84

8.2 Snapshot object . 85
8.2.1 Non-blocking snapshot . 87
8.2.2 Wait-free snapshot . 88
8.2.3 The snapshot object construction is bounded wait-free 90
8.2.4 The snapshot object construction is atomic . 91
8.2.5 Bounded snapshot object . 92

9 Immediate Snapshot and Iterated Immediate Snapshot 93
9.1 Immediate snapshot object . 93

9.1.1 Immediate snapshot and participating set problem 93
9.1.2 A one-shot immediate snapshot construction . 95
9.1.3 A participating set algorithm . 96

9.2 A connection between (one-shot) renaming and snapshot 98
9.2.1 A weakened version of the immediate snapshot problem 98
9.2.2 The adapted algorithm . 98

9.3 Iterated immediate snapshot . 99
9.3.1 IIS is equivalent to read-write . 100
9.3.2 Geometric representation of IIS . 103

IV Consensus objects 105

10 Consensus and universal construction 107
10.1 What cannot be read-write implemented . 107

10.1.1 The case of one dequeuer . 107
10.1.2 Two or more dequeuers . 108

10.2 Universal objects and consensus . 108

5

10.3 A wait-free universal construction . 109
10.3.1 Deterministic objects . 109
10.3.2 Bounded wait-free universal construction . 111
10.3.3 Non-deterministic objects . 112

10.4 Bibliographic notes . 112

11 Consensus number and the consensus hierarchy 113
11.1 Consensus number . 113
11.2 Preliminary definitions . 114

11.2.1 Schedule, configuration and valence . 114
11.2.2 Bivalent initial configuration . 114

11.3 The weak wait-free power of atomic registers . 116
11.3.1 The consensus number of atomic registers is 1 . 116
11.3.2 The wait-free limit of atomic registers . 118
11.3.3 Another limit of atomic registers . 119

11.4 Objects whose consensus number is 2 . 119
11.4.1 Consensus from a test&set objects . 119
11.4.2 Consensus from queue objects . 120
11.4.3 Consensus from swap objects . 121
11.4.4 Other objects for consensus in a system of two processes 121
11.4.5 Power and limit of the previous objects . 122

11.5 Objects whose consensus number is +∞ . 125
11.5.1 Consensus from compare&swap objects . 125
11.5.2 Consensus from mem-to-mem-swap objects . 126
11.5.3 Consensus from augmented queue objects . 127
11.5.4 Impossibility result . 128

11.6 Hierarchy of atomic objects . 128
11.6.1 From consensus numbers to a hierarchy . 128
11.6.2 Robustness of the hierarchy . 128

12 Variants of consensus: Commit-Adopt and Safe Agreement 131
12.1 Pre-agreement with Commit-Adopt . 131

12.1.1 Wait-free commit adopt implementation . 132
12.1.2 Using commit-adopt . 133

12.2 Safe Agreement and the power of simulation . 133
12.2.1 Solving safe agreement . 133
12.2.2 BG-simulation . 134

V Schedulers 137

13 Failure Detectors 139
13.1 Solving problems with failure detectors . 139

13.1.1 Failure patterns and failure detectors . 140
13.1.2 Algorithms using failure detectors . 141
13.1.3 Runs . 141

6

13.1.4 Consensus . 141
13.1.5 Implementing and comparing failure detectors . 142
13.1.6 Weakest failure detector . 142

13.2 Extracting Ω . 142
13.2.1 Overview of the Reduction Algorithm . 142
13.2.2 DAGs . 143
13.2.3 Asynchronous simulation . 144
13.2.4 BG-simulation . 146
13.2.5 Using consensus . 146
13.2.6 Extracting Ω . 147

13.3 Bibliographic Notes . 149

14 Implementing Ω in an eventually synchronous
shared memory system 151
14.1 Introduction . 151
14.2 An omega construction . 152

14.2.1 Underlying principle . 152
14.2.2 Shared memory . 152
14.2.3 Process behavior . 153
14.2.4 A property . 153

14.3 Proof of the algorithm . 153
14.4 Discussion . 154

14.4.1 Write optimality . 154
14.4.2 Another synchrony assumption . 155

14.5 Bibliographic notes . 155

15 Shared-Memory Adversaries 157
15.1 Non-uniform failure models . 157
15.2 Background . 160

15.2.1 Model . 160
15.2.2 Tasks . 160
15.2.3 The Commit-Adopt protocol . 161
15.2.4 The BG-simulation technique. 161

15.3 Non-uniform failures in shared-memory systems . 162
15.3.1 Survivor Sets and Cores . 162
15.3.2 Adversaries . 162
15.3.3 Failure patterns and environments . 163
15.3.4 Asymmetric progress conditions . 163

15.4 Characterizing superset-closed adversaries . 164
15.4.1 A topological approach . 164
15.4.2 A simulation-based approach . 165

15.5 Measuring the Power of Generic Adversaries . 166
15.5.1 Solving consensus with ABM . 166
15.5.2 Disagreement power of an adversary . 167
15.5.3 Defining setcon . 167
15.5.4 Calculating setcon(A): examples . 168

7

15.5.5 Solving consensus with setcon = 1 . 168
15.5.6 Adversarial partitions . 170
15.5.7 Characterizing colorless tasks . 170

15.6 Non-uniform adversaries and generic tasks . 171

VI Unreliable Memory 173

16 Reliable objects from unreliable objects 175
16.1 Introduction . 175

16.1.1 Responsive and non-responsive crash failures . 175
16.1.2 Notion of t-resiliency . 176
16.1.3 Content of the chapter . 176

16.2 Registers and consensus objects with responsive failures 176
16.2.1 Reliable register when failures are responsive: an unbounded construction 176
16.2.2 Reliable register when failures are responsive: a bounded construction 178
16.2.3 Consensus when failures are responsive: a bounded construction 181

16.3 Registers and consensus objects with non-responsive failures 183
16.3.1 Reliable register when failures are not responsive: an unbounded construction 183
16.3.2 Consensus when failures are not responsive: an impossibility 184

8

Chapter 1

Introduction

In 1926, Gilbert Keith Chesterton published a novel “The Return of Don Quixote” reflecting the advancing
industrialization of the Western world, where mass production started replacing personally crafted goods.
One of the novel’s characters, soon to be converted in a modern version of Don Quixote, says:

”All your machinery has become so inhuman that it has become natural. In becoming a second
nature, it has become as remote and indifferent and cruel as nature. ... You have made your
dead system on so large a scale that you do not yourselves know how or where it will hit. That’s
the paradox! Things have grown incalculable by being calculated. You have tied men to tools
so gigantic that they do not know on whom the strokes descend.”

Since mid-1920s, we made a huge progress in ’dehumanizing’ machinery, and computing systems are among
the best examples. Indeed, modern large-scale distributed software systems are often claimed to be the most
complicated artifacts ever existed. This complexity triggers a perspective on them as natural objects. This is,
at the very least, worrying. Indeed, given that our daily life relies more and more upon computing systems,
we should be able to understand and control their behavior.

In 2003, almost 80 years after the Chesterton’s book was published, Leslie Lamport, in his invited
lecture “Future of Computing: Logic or Biology”, called for a reconsideration of the general perception of
computing:

”When people who can’t think logically design large systems, those systems become incompre-
hensible. And we start thinking of them as biological systems. And since biological systems
are too complex to understand, it seems perfectly natural that computer programs should be too
complex to understand.

We should not accept this. ”

In this book, we intend to support this point of view by presenting a consistent collection of basic
comprehensive results in concurrent computing. Concurrent systems are treated here as logical entities with
clears goals and strategies.

1.1 A broad picture: the concurrency revolution

The field of concurrent computing has gained a huge importance after major chip manufacturers have
switched their focus from increasing the speed of individual processors to increasing the number of proces-
sors on a chip. The old good times where nothing needed to be done to boost the performance of programs,

9

besides changing the underlying processors, are over. To exploit multicore architectures, programs have to
be executed in a concurrent manner. In other words, the programmer has to design a program with more
and more threads and make sure that concurrent accesses to shared data do not create inconsistencies. A
single-threaded application can for instance exploit at most 1/100 of the potential throughput of a 100-core
chip.

The computer industry is thus calling for a software revolution: the concurrency revolution. This might
look surprising at first glance for the very idea of concurrency is almost as old as computer science. In fact,
the revolution is more than about concurrency alone: it is about concurrency for everyone. Concurrency is
going out of the small box of specialized programmers and is conquering the masses now. Somehow, the
very term ”concurrency” itself captures this democratization: we used to talk about ”parallelism”. Specific
kinds of programs designed by specialized experts to clearly involve independent tasks were deployed on
parallel architectures. The term ”concurrency” better reflects a wider range of programs where the very
facts that the tasks executing in parallel compete for shared data is the norm rather than the exception. But
designing and implementing such programs in a correct and efficient manner is not trivial.

A major challenge underlying the concurrency revolution is to come up with a library of abstractions
that programmers can use for general purpose concurrent programming. Ideally, such library should both be
usable by programmers with little expertise in concurrent programmings as well as by advanced program-
mers who master how to leverage multicore architectures. The ability of these abstractions to be composed
is of key importance, because an application could be the result of assembling independently devised pieces
of code.

The aim of this book is to study how to define and build such abstractions. We will focus on those that are
considered (a) the most difficult to get right and (b) having the highest impact on the overall performance of a
program: synchronization abstractions, also called shared objects or sometimes concurrent data structures.
In some sense, the History of computing is largely about devising abstractions that encapsulate the specifities
of underlying hardware and help programmers focus on higher level aspects of software applications.

1.2 The topic: shared objects

In concurrent computing, a problem is solved through several processes that execute a set of tasks. In
general, and except in so called ”embarrassingly parallel” programs, i.e., programs that solve problems that
can easily and regularly be decomposed into independent parts, the tasks usually need to synchronize their
activities by accessing shared constructs, i.e., these tasks depend on each other. These typically serialize
the threads and reduce parallelism. According to Amdahl’s law [5], the cost of accessing these constructs
significantly impacts the overall performance of concurrent computations. Devising, implementing and
making good usage of such synchronization elements usually lead to intricate schemes that are very fragile
and sometimes error prone.

Every multicore architecture provides synchronization constructs in hardware. Usually, these constructs
are “low-level” and making good usage of them is far from trivial. Also, the synchronization constructs that
are provided in hardware differ from architecture to architecture, making concurrent programs hard to port.
Even if these constructs look the same, their exact semantics on different machines may also be different,
and some subtle details can have important consequences on the performance or the correctness of the
concurrent program. Clearly, coming up with a high-level library of synchronization abstractions that could
be used across multicore architectures is crucial to the success of the multicore revolution. Such a library
could only be implemented in software for it is simply not realistic to require multicore manufacturers to
agree on the same high-level library to offer to their programmers.

10

We assume a small set of low-level synchronization primitives provided in hardware, and we use these
to implement higher level synchronization abstractions. As pointed out, these abstractions are supposed to
be used by programmers of various skills to build application pieces that could themselves be used within a
higher-level application framework.

The quest for synchronization abstractions, i.e., the topic of this book, can be viewed as a continuation
of one of the most important quests in computing: programming abstractions. A file, a stack, a record, a
list, queue and a set, are well-known examples of abstractions that have proved to be valuable in traditional
sequential and centralized computing. Their definitions and effective implementations have enabled pro-
gramming to become a high-level activity and made it possible to reason about algorithms without specific
mention of hardware primitives.

In modern computing, an abstraction is usually captured by an object representing a server program that
offers a set of operations to its users. These operations and their specification define the behavior of the
object, also called the type of the object. The way an abstraction (object) is implemented is usually hidden
to its users who can only rely on its operations and their specification to design and produce upper layer
software, i.e., software using that object. Such a modular approach is key to implementing provably correct
software that can be reused by subsequent programmers.

The abstractions we study in this book are shared objects, i.e., objects that can be accessed by concurrent
processes, typically running on independent processors. That is, the operations exported by the shared object
can be accessed by concurrent processes. Each individual process accesses however the shared object in a
sequential manner. Roughly speaking, sequentiality means here that, after it has invoked an operation on
an object, a process waits to receive a reply indicating that the operation has terminated, and only then is
allowed to invoke another operation on the same or a different object. The fact that a process p is executing
an operation on a shared object X does not however preclude other processes q from invoking an operations
on the same object X.

The objects considered have a precise sequential specification. That is, if executed in a sequential context
(without concurrency), their behavior is known. This behavior might be deterministic in the sense that the
final state and response is uniquely defined given every operation, input parameters and initial state. But this
behavior could also be non-deterministic, in the sense that given an initial state of the object, and operation
and an input parameter, there can be several possibilities for a new state and response.

So to summarise, this books studies how to implement, in the algorithmic sense, objects that shared by
concurrent provesses. Strictly speaking, the objective is to implement object types but when there is no
ambiguity, we simply say objects. In a sense, a process represents a sequential Turing machine, and the
system we consider represents a set of sequential Turing machines. These Turing machines communicate
and synchronize their activities through low-level shared objects. The activities they seek to achieve consist
themselves in implementing higher-level shared objects. Such implementations need to be correct in the
sense that they need to be wait-free and linearizable. We now overview these concepts before detailing
them later.

1.3 Linearizability

Despite concurrency among operations of an object, they should appear as if they executed sequentially. In
other words, each operation invocation op on an object X should appear to take effect at some indivisible
instant, called the linearization point of that invocation, between the invocation and the reply times of op.
This property, called Linearizability or atomicity, transforms the difficult problem of reasoning about a
concurrent system into the simpler problem of reasoning about a sequential one where the processes access

11

each object one after the other.
In short, linearizabiliy delimits the scope of an object operation could respond in a concurrent context,

given a sequential specification of the object. Linearizability provides the illusion that the operations issued
by the processes on the shared objects are executed one after the other. To program with linearizable objects,
also called atomic objects, the developer simply needs the sequential specification of each object, called also
its sequential type, which specifies how the object behaves when accessed sequentially by the processes.

Most interesting synchronization problems are best described as linearizable shared objects. Examples
of popular synchronization problems are the reader-writer and the producer-consumer problems. In the
reader-writer problem, the processes need to read or write a shared data structure such that the value read
by a process at a given point in time t is the last value written before t. Solving this problem boils down to
implementing a linearizable object exporting read() and write() operations. Such an object type is usually
called a linearizable, an atomic read-write variable or a register. It abstracts the very notions of shared file
and disk storage.

In the producer-consumer problem, the processes are usually split into two camps: the producers which
create items and the consumers which use the items. It is typical to require that the first item produced is the
first to be consumed. Solving the producer-consumer problem boils down to implementing a linearizable
object type, called a FIFO queue (or simply a queue) that exports two operations: enqueue() (invoked by a
producer) and dequeue() (invoked by a consumer).

1.4 Wait-freedom

This is the second property we will typically require from the object implementations. It can be viewed as
a way to enforce a radically alternative approach to classical locking-based approaches. Indeed, traditional
synchronization algorithms rely on mutual exclusion (usually based on some locking primitives): critical
shared objects (or critical sections of code within shared objects) are accessed by processes one at a time.
No process can enter a critical section if some other process is in that critical section. We also say that a
process has acquired a lock on that object (resp., critical section). This technique is safe in the sense that
it ensures atomicity and protects the program from inconsistencies due to concurrent accesses to shared
variables.

However, coarse-grained mutual exclusion does not scale and fine-grained mutual exclusion can easily
lead to violate linearizability. Indeed, linearizability is automatically ensured only if all related variables are
protected by the same critical section. This significantly limits the parallelism and thus the performance of
the program, unless the program is devised with minimal interference among processes. This, on the other
hand, is nevertheless hard to expect from common programmers and precludes most legacy programs.

Maybe more importantly, mutual exclusion hampers progress since a process delayed in a critical section
prevents all other processes from entering that critical section. Delays could be significant and especially
when caused by crashes, preemptions and memory paging. For instance, a process paged-out might be
delayed for millions of instructions, and this would mean delaying many other processes if these want to
enter the critical section held by the delayed process. With modern architectures, we might be talking about
one process delaying hundreds of processors, making them completely idle and useless.

Lock-free implementations of atomic objects provide an alternative to mutual exclusion-based imple-
mentations. In particular wait-freedom, a strong form of lock-freedom, precludes any form of blocking.

Wait-freedom says that no process p ever prevents any other process q from making progress, provided
q remains alive and kicking. A process q should be able to terminate each of its operations on a shared
object X despite speed variations or the failure of any other process p. Process p could be very fast and

12

might be permanently accessing shared object X, or could have been swapped out by the operating system
while accessing X. None of these situations should prevent q from completing its operation. Wait-freedom
transforms the difficult problem of reasoning about a failure-prone system where processes can be arbitrarily
delayed or speeded up, into the simpler problem of reasoning about a system where every process progresses
at its own pace and runs to completion.

In other words, the process invoking the operation on the object should obtain a response for the op-
eration, in a finite number of its own steps, independently of concurrent steps from other processes. The
notion of step means here a local instruction of the process, say updating a local variable, or an operation
invocation on a base object (low-level object) used in the implementation. Sometimes, we will assume that
the object to be implemented should tolerate a certain number of base object failures. That is, we will seek
to implement objects that are resilient in the sense that they eventually return from process invocations, even
if the underlying base objects fail and do not return, or return useless replies.

Ensuring linearizability alone or wait-freedom alone is simple. In particular, one could ensure lineariz-
ability using locks so that every operation on the implemented object is performed in an indivisible critical
section. The implementation is trivially linearizable but not wait-free: a process failing in the critical section
prevents any other process from making progress. Similarly, a trivial wait-free implementation may return
arbitrary responses to each operation. The main challenge is to ensure both wait-freedom and linearizability.

1.5 Object implementation

As explained, this book studies how to wait-free implement high-level atomic objects out of more primitive
base objects. The notions of high and primitive being of course relative as we will see. It is also important to
notice that the term implement is to be considered in an abstract manner; we will describe the algorithms in
pseudo-code. (There will not be any C or Java code in this book). A concrete execution of these algorithms
would need to go through a translation into some programming language.

An object to be implemented is typically called high-level, in comparison with the objects used in the
implementation, considered at a lower-level. It is common to talk about emulations of the high-level object
using the low-level ones. Unless explicitly stated otherwise, we will by default mean wait-free implementa-
tion when we write implementation, and atomic object when we write object.

It is often assumed that the underlying system model provides some form of registers as base objects.
These provide the abstraction of read-write storage elements. Message-passing systems can also, under
certain conditions, emulate such registers. Sometimes the base registers that are supported are atomic but
sometimes not. As we will see in this book, there are algorithms that implement atomic registers out of
non-atomic base registers that might be provided in hardware.

Some multiprocessor machines also provide objects that are more powerful than registers like test&tet
objects or compare&swap objects. Intuitively, these are more powerful in the sense that the writer process
does not systematically overwrite the state of the object, but specifies the conditions under which this can be
done. Roughly speaking, this enables more powerful synchronization schemes than with a simple register
object. We will capture the notion of “more powerful” more precisely later in the book.

Not surprisingly, a lot of work has been devoted over the last decades to figure out whether certain
objects can wait-free implement other objects. As we have seen, focusing on wait-free implementations
clearly excludes mutual exclusion (locking) based approaches, with all its drawbacks. From the application
perspective, there is a clear gain because relying on wait-free implementations makes it less vulnerable to
failures and dead-locks. However, the desire for wait-freedom makes the design of atomic object imple-
mentations subtle and difficult. This is particularly so when we assume that processes have no a priori

13

information about the interleaving of their steps: this is the model we will assume by default in this book to
seek general algorithms.

1.6 Reducibility

In its abstract form, the question we address in this book, namely of implementing high-level objects using
lower level objects, can be stated as a general reducibility question. Given two object types X1 and X2, can
we implement X2 using any number of instances of X1 (we simply say using X1)? In other words, is there
an algorithm that implements X2 using X1? The specificity of concurrent computing here is in the very
fact that under the term ”implementing”, lies the notions of linearizability and wait-freedom These notions
encapsulate the smooth handling of concurrency and failures.

When the answer to the reducibility question is negative, and it will be for some values of X1 and X2,
then it is also interesting to ask what is needed (under some minimality metric) to add to the low-level objects
(X1) in order to implement the desired high-level object (X2). For instance, if the base objects provided by
a given multiprocessor machine are not enough to implement a particular object in software, knowing that
extending the base objects with another specific object (or many of such objects) is sufficient, might give
some useful information to the designers of the new version of the multiprocessor machine in question. We
will see examples of these situations.

1.7 Organization

The book is organized in an incremental way, starting from very basic objects, implementing on top simple
objects, then going step by step to implementing more and more sophisticated and powerful objects. After
precisely defining the notions of linearizability and wait-freedom, we proceed through the following steps.

1. We first study how to implement linearizable read-write registers out of non-linearizable base reg-
isters. Roughly speaking, assuming base objects registers that provide weaker guarantees than lin-
earizability, we show how to wait-free implement linearizable registers from these weak registers.
Furthermore, we also show how to implement registers that can contain an arbitrary large range of
values, and be read and written by any process in the system, from single-bit (containing only 0 or
1) base registers, where each base register can be accessed by only one writer process and only one
reader process.

2. We then discuss how to use registers to implement seemingly more sophisticated objects than regis-
ters, like counters and snapshot objects. We contrast this with the inherent limitation of linearizable
registers in implementing more powerful objects like queues. This limitation is highlighted through
the seminal consensus impossibility result.

3. We then discuss the importance of consensus as an object type, by proving its universality. In partic-
ular, we describe a simple algorithm that uses registers and consensus objects to implement any other
object. We then turn to the question on how to implement a consensus object from other objects. We
describe an algorithm to implement a consensus object in a system of two processes, using registers
and either a test&set or a queue objects, as well as an algorithm that implements a consensus object
using a compare&swap object in a system with an arbitrary number of processes. The difference
between these implementations is highlighted to introduce the notion of consensus number.

14

4. We then study a complementary way of implementing consensus: using registers and specific oracles
that reveal certain information about the operational status of the processes. Such oracles can be
viewed as failure detectors providing information about which process are operational and which
processes are not. We discuss how even an oracle that is unreliable most of time can help devise
a consensus algorithm. We also discuss the implementation of such an oracle assuming that the
computing environment satisfies additional assumptions about the scheduling of the processes. This
may be viewed as a slight weakening of the wait-freedom requirement which requires progress no
matter how processes interleave their steps.

5. We then consider the question of implementing objects out of base objects that can fail. This issue can
be of practical relevance in a large distributed multicore architecture where it is reasonable to assume
that certain base objects might independenty fail. It also abstracts the problem of implementing a
highly available storage abstraction in a storage area network where basic units (files or disks) can
fail. Not surprisingly, the general way to achieve resilience is replication, but the underlying approach
depends on the failure model. We distinguish two canonical failure models. First, we consider a
failure model where a base object that fails keeps on returning a specific value ⊥ whenever it is
invoked. This model is called the responsive failure model. Then we look at another failure model
where a base object that fails stops replying. This model is called the non-responsive failure model.
As we will see, algorithms that tolerate the first form of failures are usually sequential algorithms
whereas those that tolerate the second form of failures are usually parallel ones.

6. Finally, we revisit some of the implementations given in the book by giving up the assumption that
processes do have unique identities. We study here anonymous implementations. We give anonymous
implementations of a weak counter object and a snapshot object based on registers.

1.8 Bibliographical notes

The fundamental notion of abstract object type has been developed in various textbooks on the theory or
practice of programming. Early works on the genesis of abstract data types were described in [23, 67,
76, 75]. In the context of concurrent computing, one of the earliest work was reported in [17, 73]. More
information on the history concurrent programming can be found in [15].

The notion of register (as considered in this book) and its formalization are due to Lamport [64]. A
more hardware-oriented presentation was given in [72]. The notion of atomicity has been generalized to any
object type by Herlihy and Wing [52] under the name linearizability. The concept of snapshot object has
been introduced in [1]. A theory of wait-free atomic objects was developed in [56].

The classical (non-robust) way to ensure linearizability, namely through mutual exclusion, has been
introduced by Dijkstra [26]. The problem constituted a basic chapter in nearly all textbooks devoted to
operating systems. There was also an entire monograph solely devoted to the mutual exclusion problem
[80]. Various synchronization algorithms are also detailed in [84].

The notion of wait-free computation originated in the work of Lamport [61], and was then explored
further by Peterson [78]. It has then been generalized and formalized by Herlihy [43].

The consensus problem was introduced in [77]. Its impossibility in asynchronous message-passing sys-
tems prone to process crash failures has been proved by Fischer, Lynch and Paterson in [30]. Its impossibility
in shared memory systems was proved in [69]. The universality of the consensus problem and the notion of
consensus number were investigated in [43].

15

The concept of failure detector oracle has been introduced by Chandra and Toueg [19]. An introductory
survey to failure detectors can be found in [?].

16

Part I

Correctness: safety and liveness

17

Figure 2.1: A sequential execution of a queue

Figure 2.1 conveys a sequential execution of a system made up of a single process using the queue
(here the time line goes from left to right). The process first enqueues element a, then element b, and
finally element c. According to the expected semantics of a queue, and as depicted by the figure, the first
invocation of Deq() returns element a and then the second returns element b. Element c would be the next
to be returned.

Figure 2.2 depicts a concurrent execution of a system made up of two processes sharing the same queue.
Process p2 is the producer: it enqueues a series of elements: a, b, c, d, e. Process p1 is the consumer: it
dequeues elements. On Figure 2.2, the execution of the first Deq() issued by p1 overlaps with Enq(a),

19

Figure 2.3: Correctness according to linearizability

Before defining linearizability however, we first define more precisely the basic notions involved, namely
processes and objects, and then the very notion of a sequential specification.

2.2 The Players

2.2.1 Processes

We consider a system consisting of a finite set of n processes, denoted p1, . . . , pn. Besides accessing lo-
cal variables, processes may execute operations on shared objects (we will sometimes simply say objects.
Through these objects, the processes synchronize their computations. In the context of this chapter, which
aims at defining linrarizability of the objects, we will omit the local variables accessed by the processes.

An execution by a process of an operation on a object X is denoted X.op(arg)(res) where arg and
res denote, respectively, the input and output parameters of the invocation. The output corresponds to
the response to the invocation. Sometimes we simply write X.op when the input and output parameters
are not important. The execution of an operation op() on an object X by a process pi is modeled by
two events, namely, the events denoted inv[X.op(arg) by pi] that occurs when pi invokes the operation
(invocation event), and the event denoted resp[X.op(res) by pi] that occurs when the operation terminates
(response event). We say that these events are generated by process pi and associated with object X. Given

20

an operation X.op(arg)(res), the event resp[X.op(res) by pi] is called the response event matching the
invocation event inv[X.op(arg by pi]. Sometimes, when there is no ambiguity, we talk about operations
where we should be talking about operation executions.

Every interaction between a process and an object corresponds to a computation step and is represented
by an event: the visible part of a step, i.e., the invocation or the reply of an operation. A sequence of such
events is called a history and this is precisely how we model executions of processes on shared objects. We
will detail the very notion of history later in this chapter.

Whilst we assume that the system of processes is concurrent, we generally assume that each process
is individually sequential: a process executes (at most) one operation on an object at a time. That is, the
algorithm of a sequential process stipulates that after an operation is invoked on an object, and until a
matching response is received, the process does not invoke any other operation. As pointed out, the fact that
processes are (individually) sequential does not preclude them from concurrently invoking operations on
the same shared object. Sometimes however, we ill focus on sequential executions (modeled by sequential
histories) which precisely preclude such concurrency; that is, only one process at a time invokes an operation
on an object.

2.2.2 Objects

An object has a unique identity and a unique type. Multiple objects can be of the same type however: we talk
about instances of the type. In our context, we consider a type as defined by (1) the set of possible values
for (the states of) objects of that type, including the initial state; (2) a finite set of operations through which
the (state of the) objects of that type can be manipulated; and (3) a sequential specification describing, for
each operation, the effect this operation produces when it executes alone on the object, i.e., in the absence
of concurrency. The effect is measured in terms of the reply that the object returns and the new state that the
object gets to after the operation executes.

We say that an object operation is deterministic if, given any state of the object and input parameters,
the response and the resulting state of the object are uniquely defined. An object type is deterministic if
it has only deterministic operations. Otherwise it is non-deterministic: several outputs and resulting sates
are possible. The pair, the output returned and the resulting state, is chosen randomly from the set of such
possible pairs. We assume here finite non-determinism, i.e., for each state and operation, the set of possible
outcomes is finite.

A sequential specification is generally modeled as a set of sequences of invocations immediately fol-
lowed by matching responses that, starting from the initial state of the type, are allowed by the object when
it is accessed sequentially. Indeed the resulting state obtained after each operation execution is not directly
conveyed, but it is indirectly reflected through the responses returned in the subsequence operations in the
sequence.

To illustrate the notion of a sequential specification, consider the following two object types:

Example 1: a read/write object (register). The first type (called register) is a simple read/write abstrac-
tion, that models objects such as a shared memory word, a shared file or a shared disk. This captures the
classical reader/writer synchronization problem.

It exports two operations:

• The operation read() has no input parameter. It returns a value of the object.

• The operation write(v) has an input parameter, v, a new value of the object. The result of that
operation is a value ok indicating to the calling process that the operation has terminated.

21

Figure 2.4: A sequential execution of a register

Example 2: a FIFO queue The second example is the unbounded (FIFO) queue described in Section ??.
This captures the classical producer/consumer synchronization problem.

The producer enqueues items in a queue that the consumers dequeues. To simplify the presentation, we
typically omit to mention the ok indication after every enqueue invocation. Every dequeue returns the first
element enqueued and not dequeued yet. If there is not such element (i.e., the queue is empty), a specific
default value ⊥ is returned. It is important to notice that this specification never prevents an enqueue or a
dequeue operation to be executed: both enqueue and dequeue operations are total in this sense. One could
consider a variant of the specification where the enqueue could not be executed if the queue is empty: we
preclude such partial specifications.

2.2.3 Histories

Processes interact with shared objects via invocation and response events. Such events are totally ordered.
(We assume without loss of generality that simultaneous events are arbitrarly ordered).

Thus, the interaction between processes and objects is modeled as a totally ordered set of events H ,
called a history (sometimes also called a trace). The total order relation on H , denoted <H , abstracts out
the real-time order in which the events actually occur.

Recall that an event includes the name of an object, the name of a process, the name of an operation
and input or output parameters. We assume that each event in H is uniquely identified.1 The objects and
processes associated with events of H are said to be involved in H .

A local history of pi, denoted H|pi, is a projection of H on process pi: the subsequence H consisting
of the events generated by pi.

Two histories H and H ′ are said to be equivalent if they have the same local histories, i.e., for each
process pi, H|pi = H ′|pi.

As we are interested only in histories generated by sequential processes, we focus on histories H such
that, for each process pi, H|pi (the local history generated by pi) is sequential: it starts with an invoca-
tion, followed by a response, (the matching response associated with the same object) followed by another
invocation, etc. We say in this case that H is well-formed.

An operation is said to be complete in a history if the history includes both the event corresponding
to the invocation of the operation and its response. Otherwise we say that the operation is pending. A
history without pending operations is said to be complete. A history with pending operations is said to be
incomplete. Note that, being sequential, a process can have at most one pending operation in a given history.

1For example, we can choose the identifier of an (invocation or response) event x of a process pi in H as (pi, k) where k is the
number of events preceding x in H |pi.

22

A history H induces an irreflexive partial order on its operations as described in the following. Let op =
X.op1() by pi and op′ = Y.op2() by pj be two operations. Informally, operation op precedes operation op′,
if op terminates before op′ starts, where “terminates” and “starts” refer to the time-line abstracted by the <H

total order relation. More precisely:

(
op→H op′

) def
=

(
resp[op] <H inv[op′]

)
.

Two operations op and op′ are said to overlap (we also say they are concurrent) in a history H if neither
resp[op] <H inv[op′], nor resp[op′] <H inv[op]. Notice that two overlapping operations are such that
¬(op →H op′) and ¬(op′ →H op). As sequential histories have no overlapping operations, it follows that
→H is a total order if H is a sequential history.

Figure 2.5 depicts a well-formed history H . The history contains ten events e1 . . . e10 (e4, e6, e7
and e9 are explicitly detailed). As all events in H involve the same object, the reference to this object is
omitted. The enqueue operation issued by p2 overlaps both enqueue operations issued by p1. Notice that
the operation Enq(c) by p2 is concurrent with both Enq(a) and Enq(b) issued by p1. Moreover, history H
has no pending operations, and is consequently complete.

p1

p2

e1 e2 e3 e5 e8 e10History Ĥ

e4 = inv[Enq(b) by p1]

e6 = resp[Enq(ok) by p1]

e9 = resp[Deq(?) by p2]

e7 = inv[Deq() by p2]

Enq (a) Enq (b) Deq (a|b|c) ?

Deq (a|b|c) ?Enq (c)

Figure 2.5: Example of a history

To illustrate the notions of incomplete and complete histories, consider again Figure 2.5. Sequence
e1 . . . e9 is an incomplete history where the dequeue operation issued by p1 is pending. Sequence e1 . . . e6 e7 e8 e10
is also an incomplete history in which the dequeue operation issued by p2 is pending. Finally, history
e1 . . . e8 has two pending operations.

We proceed now to define what we mean by a sequential history.

23

2.2.4 Sequential histories

Definition A history is sequential if its first event is an invocation, and then (1) each invocation event,
except possibly the last, is immediately followed by the matching response event, and (2) each response
event, except possibly the last, is immediately followed by an invocation event. (The precision “except
possibly the last” is due to the fact that a history can be incomplete as we discussed earlier.) A complete
sequential history always ends with a response event. A history that is not sequential is said to be concurrent.

Given that a sequential history S has no overlapping operations, the associated partial order→S defined
on its operations is actually a total order. Strictly speaking, the sequential specification of an object is a
set of sequential histories involving solely that object. Basically, the sequential specification represents all
possible sequential accesses to the object.

Example Considering Figure 2.5, H is a complete concurrent history. On the other hand, the complete
history

H1 = e1 e3 e4 e6 e2 e5 e7 e9 e8 e10

is sequential: it has no overlapping operations. We can thus highlight its sequential nature by separating its
operations using square brackets as follows:

H1 = [e1 e3] [e4 e6] [e2 e5] [e7 e9] [e8 e10].

The following histories H2 and H3

H2 = [e1 e3] [e4 e6] [e2 e5] [e8 e10] [e7 e9],

H3 = [e1 e3] [e4 e6] [e8 e10] [e2 e5] [e7 e9].

are also sequential. Notice that histories H , H1, H2, H3 are equivalent. Let H4 be the history defined as
follows

H4 = [e1 e3] [e4 e6] [e2 e5] [e8 e10] [e7.

H4 is an incomplete sequential history. All these histories have the same local history for process p1:
H|p1 = H1|p1 = H2|p1 = H3|p1 = H4|p1 = [e1 e3] [e4 e6] [e8 e10], and, as far p2 is concerned, H4|p2
is a prefix of H|p2 = H1|p2 = H2|p2 = H3|p2 = [e2 e5] [e7 e9].

So far, we defined the notion of a history as an abstract way to depict the interaction between a set of
processes and a set of shared objects. In short, a history is a total order on the set of invocation and response
events generated by the processes on the objects. We are now ready to define what we mean by a correct
shared-object implementation, based on the notion of linearizability.

2.3 Linearizability

Intuitively, linearizability states that a history is correct if the response returned to its invocations could
have been obtained by a sequential execution, i.e., according to the sequential specifications of the objects.
More specifically, we say that a history is linearizable if each operation appears as if it has been executed
instantaneously at some indivisible point between its invocation event and its response event. This point is
called the linearization point of the operation. We now define more precisely the linearizability concept and
presents its main properties.

24

2.3.1 Legal history

As we pointed the definition of a linearizable, history refers to sequential specifications. The notion of a
legal history captures this idea.

Given a sequential history S, let S|X (S at X) denote the subsequence of S made up of all the events
involving object X. We say that a sequential history S is legal if, for each object X, the sequence S|X =
inv[X.op1], resp[X.op1(res1)], inv[X.op2], resp[X.op2(res2)], . . . belongs to the sequential specification
of X, i.e., there exists a sequence of states of X, q1, q2, . . ., such that, for all i = 1, . . . , |(S|X)|, opi applied
to state qi−1 may return resi and turn the state into qi. (Here q0 is the initial state of X.) We say that the
sequence q1, q2, . . . witnesses the legality of S|X. Thus, a sequential history S is legal if by accessing the
objects sequentially in the order prescribed in S, we may get the responses contains in S.

2.3.2 Linearizability of complete histories

We first define in this section linearizability for complete histories H , i.e., histories without pending opera-
tions: each invocation event of H has a matching response event in H . The section that follows will extend
this definition to incomplete histories.

Definition A complete history H is linearizable if there is a history S such that:

1. H and S are equivalent,

2. S is sequential and legal, and

3. →H⊆→S .

The definition above states that for a history H to be linearizable, there must exist a permutation of H , S
(we call it a witness history or a linearization), which satisfies the following requirements. First, S has to be
indistinguishable from H to any process [1]. Second, S has to be sequential (interleave the process histories
at the granularity of complete operations) and legal (respect the sequential specification of each object) [2].
Notice that, as S is sequential, →S is a total order. Finally, S has also to respect the real-time occurrence
order of the operations as defined by →H [3]. S represents a history that could have been obtained by
executing all the operations, one after the other, while respecting the occurrence order of non-overlapping
operations. Such a sequential history S is called a linearization of H .

When proving that an algorithm implements a linearizable object, we need to prove that all histories
generated by the algorithm are linearizable, i.e., identify a linearization of its operations that respects the
“real-time” occurrence order of the operations and that is consistent with the sequential specification of the
object.

It is also important to notice that a history H , may allow for several linearizations: the operations in H
could have several possible linearization points. To respect the real time occurrence order, the linearization
point associated with an operation has always to appear within the interval defined by the invocation event
and the response event associated with that operation.

Examples Figure 2.5 describes a history H where the dequeue operation invoked by p1 returns element
b while the dequeue operation invoked by p2 returns element a. We have e9 = resp[Deq(a) by p2] and
e10 = resp[Deq(b) by p1]. To show that H is linearizable, we have to exhibit a linearization satisfying the
three requirements of linearizability above. In fact, history H1 = [e1 e3] [e4 e6] [e2 e5] [e7 e9] [e8 e10] is

25

such a witness. At the granularity level defined by the operations, witness history H1 can be represented as
follows

[Enq(a) by p1][Enq(b) by p1][Enq(c) by p2][Deq(a) by p2][Deq(b) by p1].

Figure 2.6 depicts the linearization point of each operation. A triangle is associated with each operation,
such that the vertex at the bottom of a triangle (bold dot) represents the associated linearization point. A
triangle shows how linearizability allows shrinking an operation (the history of which takes some duration)
into a single point of the time-line. In this sense, linearizability indeed reduces the difficult problem of
reasoning about a concurrent system to the simpler problem of reasoning about a sequential system where
the operations issued by the processes are each executed at a single point in time.

p1

p2

e10e9e8e7e6e5e4e3e2e1History Ĥ

Enq (a) Enq (b) Deq (b)

Deq (a)Enq (c)

Figure 2.6: Linearization points

Figure 2.6 depicts a history where the response events e9 and e10 are such that e9 = resp[Deq(b) by p2]
and e10 = resp[Deq(a) by p1]. It is easy to see that this history is linearizable: the sequential history H2 de-
scribed in Section 2.2.4 is one possible linearization. Similarly, the history where e9 = resp[Deq(c) by p2]
and e10 = resp[Deq(a) by p1] is also linearizable. It has the following linearization:

[Enq(c) by p2][Enq(a) by p1][Enq(b) by p1][Deq(c) by p2][Deq(a) by p1].

On the other hand, the history in which the two dequeue operations would return the same element is not
linearizable: it does not have any linearization that respects the sequential specification of the queue.

2.3.3 Linearizability of incomplete histories

As we explained, these are histories with at least one process whose last operation is pending: the invocation
event of this operation appears in the history while the corresponding response event does not. These are
partial histories. History H4 described in Section 2.2.4 is such a partial history. Extending linearizability
to partial histories is important as it allows to cope with process crashes. We cannot decide when processes
crash and then cannot expect from a process to first terminate a pending operation before crashing. (As
pointed out earlier, crashes model the situation where processes are arbitrarily slow.)

Definition A partial history H is linearizable if H can be completed in such a way that every invocation of
a pending operation is either removed or completed with a response event, so that the resulting (complete)
history H ′ is linearizable.

26

Basically, this definition transforms the problem of determining whether an incomplete history H is
linearizable to the problem of determining whether a complete history H ′, derived from H , is linearizable.
H ′ is obtained by adding response events to certain pending operations of H , as if these operations have
indeed been completed, but also by removing invocation events from some of the pending operations of H .
It is important however that all complete operations of H are preserved in H ′. It is also important to notice
that, given an incomplete history H , we can derive several histories H ′ that satisfy the required conditions.

Read(0) Read(v)

Ĥ1

Ĥ0

p1

p2

Write(0) Write(1)

Figure 2.7: Two ways of completing a history

Example Figure 2.7 depicts two processes accessing a shared register. Process p1 first writes value 0.
The same process later issues a write for value 1, but p1 crashes during this second write (this is indicated
by a cross on its time-line). Process p2 executes two consecutive read operations. The first read operation
lies between the two write operations of p1 and returns value 0. A different value would clearly violate
linearizability. The situation is less obvious with the second value and it is not entirely clear what value v
has to be returned by the second read operation in order for the history to be linearizable.

As we now explain, both values 0 and 1 can be returned by that read operation while preserving lin-
earizability. The second write operation is pending in the incomplete history H modeling this execution.
This history H is made up of 7 events (the name of the object and process names are omitted as there is no
ambiguity), namely:

inv[write(0)] resp[write(0)] inv[read(0)] resp[read(0)] inv[read(v)] inv[write(1)] resp[read(v)].

We explain now why both 0 and 1 can be returned by the second read:

• Assume that the returned value v is 0.
We can associate with history H a linearization H0 which includes only complete operations and re-
spects the partial order defined by H on these operations (see Figure 2.7). To obtain H0, we construct
history H ′ by removing from H event inv[write(1)]: we obtain a complete history, i.e., without
pending operations.

History H with v = 0 is thus linearizable. The associated witness history H0 models the situation
where p1 is considered as having crashed before invoking the second write operation: everything
appears as if this write has never been issued.

27

• Assume now that the returned value v is 1.
Similarly to the previous case, we can associate with history H a linearization H1 that respects the
partial order on the operations. We actually derive H1 by first constructing H ′, which we obtain by
adding to H the response event res[write(1)]. (In Figure 2.7, the part added to H in order to obtain
H ′ -from which H1 is constructed- is indicated by dotted lines).

The history where v = 1 is consequently linearizable. The associated linearization H1 represents the
situation where the second write is taken into account despite the crash of the process that issued that
write operation.

2.4 Linearizability is a compositional property

Let P be any property, i.e., a set of histories. The property P is said to be compositional if the set of
objects as a whole satisfies P whenever each object taken alone satisfies P : for each history H , we have
∀X H|X ∈ P if and only if H ∈ P . Intuitively, compositionality infers correctness of a composition from
correctness of the components.

Theorem 1 A history H is linearizable if and only if, for each object X involved in H , H|X is linearizable.

Proof The “only if” direction is an immediate consequence of the definition of linearizability: if H is
linearizable then, for each object X involved in H , H|X is linearizable. Indeed, for every linearization S of
H , S|X is a linearization of H|X.

To prove “if” direction, consider a history H , where for each object X, H|X has a linearization, denoted
SX . Recall that→S is the total order SX imposes on the operation on X in H . We will show below that the
relation→=

⋃
X{→X} ∪ {→H} infers no cycles. If this is the case, its transitive closure is a partial order,

and its linear extension S will be a linearization of H .
Suppose, by contradiction that → contains a cycle. Recall that →X and →H are transitive, so we

can replace any fragment of the form op1 →X op2 →X op3 (respectively, op1 →H op2 →H op3) with
op1 →X op3 (respectively, op1 →H op3). Moreover, since every operation concerns exactly one object,
the cycle cannot contain fragments of the form op1 →X op2 →Y op3 for X ̸= Y . Hence, the cycle must
alternate edges of the form→X with edges→H .

Now consider the fragment op1 →H op2 →X op3 →H op4. Recall that→X is the order of operations in
SX , a linearization of HX . Since SX respect the real time order, we have op3 !X op2, i.e., the invocation
of op2 precedes the response of op3 in H|X (and, thus, in H). Since op1 →H op2, the response of op1
precedes the invocation of op2 and, thus, the response of op3. Since op3 →H op4, the response of op3 and,
thus, the response of op1 precedes the invocation of op4 in H . Hence, op1 →H op4, i.e., we can shorten the
fragment to one edge →H . By eliminating all edges of the form →X we obtain a cycle of edges →H—a
contradiction with the definition of the real-time order.

We derive that the transitive closure of→ is irreflexive and anti-symmetric and, thus, has a linear exten-
sion: a total order on operations in H that respects→H and→X , for all X. Consider the sequential history
S induced by any such total order. Since, for all X, S|X = SX and SX is legal, S is legal. Since→H⊆→S ,
S respects the real-time order of H . Finally, since each SX is equivalent to a completion of H|X, S is
equivalent to a completion of H , where each incomplete operation on an object X is completed in the way
it is completed in SX . Hence, S is a linearization of H . ✷Theorem 1

Considering an execution of a set of processes that access concurrently a set of objects, linearizability
allows reasoning as the operations issued by the processes on the objects were executed one after the other.

28

The previous theorem is fundamental. It states that when one has to reason on sequential processes that
access concurrent atomic objects, one can reason on a per object basis, without loosing the linearizability
property on the whole computation.

2.5 Linearizability is nonblocking

Linearizability is a nonblocking property: an incomplete total operation is not required to wait until another
operation to complete.

Theorem 2 Let H be a finite linearizable history, and let inv[op] be a pending invocation of a total opera-
tion in H . Then there exists r = res[op] such that H · r is linearizable.

Proof Let H be a finite linearizable history and L be linearization of H . Let H̄ be a completion of H such
that L is equivalent to H̄ . Recall that L is legal and respects the real-time order of H .

Let i = inv[op] be a pending invocation in H , where op is total.
Now two cases are possible:

• L contains op, and let r be the matching response of op in L. Then L is also linearization of H · r.

Indeed, consider history H̄ ′, an extension of H · r that is equivalent to H̄ . We obtain it by reordering
responses added to H to obtain H̄ so that r is the first such response. Then H̄ ′ is a linearization of
H · r.

• L does not contain op. Consider L′ = L · i · r, where r is a legal response matching the invocation i
applied at the end of L. Since op is total, such a response exists.

L′ is a linearization of H · r. Indeed H̄ ′ obtained from H̄ by inserting r immediately after the last
event of H is a completion of H · r that is equivalent to L′.

In both cases, we construct a linearizable history H · r in which inv[op] is complete. ✷Theorem 2

2.6 Linearizability is a safety propery

It is convenient to reason about the correctness of a shared object implementation by splitting its correctness
properties into safety and liveness. Intuitively, safety properties ensure that nothing “bad” is ever going to
happen, and liveness properties guarantee that something “good” eventually happens.

Formally, a property is a set of (finite or infinite) histories. Now a property P is a safety property if:

• P is prefix-closed: if H ∈ P , then for every prefix H ′ of H , H ′ ∈ P .

• P is limit-closed: for every infinite sequence H0,H1, . . . of histories, where each Hi is a prefix of
Hi+1 and each Hi ∈ P , the limit history H = limi→∞Hi is in P .

To ensure that a safety property P holds for a given implementation, it is thus enough to show that every
finite histories is in P : an execution is in P if and only if each of its finite histories is in P . Indeed, every
infinite history of an implementation is the limit of some sequence of ever-extending finite histories and thus
should also be in P .

29

Theorem 3 Linearizability is a safety property.

The proof of Theorem 3 uses a slight generalization of König’s infinity lemma formulated as follows:

Lemma 1 (König’s Lemma) Let G be an infinite directed graph such that (1) each node of G has finite
outdegree, (2) each vertex of G is reachable from some root vertex of G (a vertex with zero indegree), and
(3) G has only finitely many roots. Then G has an infinite path with no repeated nodes starting from some
root.

Now we prove Theorem 3, i.e., we show that set the set of linearizable histories is prefix- and limit-
closed. Recall that we only consider objects with finite non-determinism: an operation applied to a given
object state may return only finitely many responses and cause only a finite number of state transitions.
Proof Consider a linearizable history H . Since linearizability is compositional, we can simply assume that
H is a history of operations on a single (composed) object X. We show first that any H ′, a prefix of H , is
also linearizable (with respect to X).

Let S be any linearization of H , i.e., a sequential legal history that is equivalent to (a completion of H)
and respects the real-time order of H . Now we construct a sequential history S′ as follows: we take the
shortest prefix of S that contains all complete operations of H ′. Since S contains all compete operations of
H ′, such a prefix of S exists.

We claim that S′ is a linearization of H ′. Indeed, let us complete H ′ by removing operations that do
not appear in S′ and adding responses to incomplete operations in H ′ that are present in S′. This way only
incomplete operations are removed from H ′ since, by construction, all operations that are complete in H ′

appear in S′. Let H̄ ′ denote the resulting complete history.
First we observe that complete histories S′ and H̄ ′ consist the same set of operations. By construction,

every operation in H̄ ′ appears in S′. Now suppose, by contradiction, that S′ contains an operation op that
does not appear in H̄ ′. Since only operations that do not appear in S′ were removed from H ′ to obtain H̄ ′,
op does not appear in H ′ either. Since S′ is the shortest prefix of S that contains all complete operations
of H , op cannot be the last operation appearing in S′. Moreover, for the same reason, the last operation in
S′ must be complete in H ′, let us denote this operation by op′. Since op does not appear in H ′ and op′ is
complete in H ′, we have op′ <H op. But op precedes op′ in S′ (and, thus, in S), i.e., op <S op′. Hence, S
violates the real-time order of H—a contradiction.

Since S′ is a prefix of a legal history it is also legal. Moreover, S′ and H̄ ′ contain the same set of
operations and S′ respects the real-time order in H̄ ′: if <H̄′⊆<S′ (otherwise, S would violate the real-time
order in H).

Consider any local history H̄ ′|pi. Recall that we only assume well-formed histories and, thus, H̄ ′|pi is
sequential. Since S′ and H̄ ′ contain the same set of operations and S′ respects the real-time order of H̄ ′, we
have S′|pi = H̄ ′|pi. Hence, S′ and H̄ ′ are equivalent.

Thus, S′ is indeed a linearization of H ′ and, thus, linearizability is prefix-closed.
To show that linearizability is limit-closed, we consider an infinite sequence of ever-extending lineariz-

able histories H0,H1,H2, Our goal is to show that H = limi→∞Hi is linearizable. We assume that H0

is the empty history and each Hi+1 is a one-event extension of Hi (by prefix-closedness, prefix of every Hi

is linearizable, so we do not lose generality this way).
Now we construct a directed graph G = (V,E) as follows. Vertices of G are all tuples (Hi, S,Q),

where i = 0, 1, . . . , |H|, S is any linearization of Hi that ends with a complete operation present in Hi,
and Q is any sequence of object states that witnesses the legality of H . Now there is an directed edge
((Hi, S,Q), (Hj , S′, Q′) in G if and only if j = i+ 1, S is a prefix of S′ and Q is a prefix of Q′.

30

Note that each Hi has at least one vertex (Hi, S,Q). Indeed, by taking any linearization of Hi and
removing operations at the end of it that are incomplete in Hi, we obtain a linearization of a completion
of Hi in which these operations are removed. Thus, there exists a linearization S of Hi that ends with a
complete operation in Hi. Since S is legal, it must have a witness sequence of states Q.

We use König’s lemma to show that the resulting graph G contains an infinite path (H0, S0), (H1, S1), . . .
and the limit limi→∞ Si is a linearization of the infinite limit history H .

First we observe that each non-empty vertex (Hi+1, S′, Q′) is connected to some (Hi, S,Q). There are
two cases to consider:

• The last operation op of S′ is a complete operation in Hi. In this case, S′ is also a linearization of
Hi. Indeed, even if the last event of Hi+1 is the invocation of a new operation op′, this operation
cannot appear in S′: it can only appear before op in S′ violating the real-time order in Hi+1. Thus,
(Hi, S′, Q′) is a vertex in G.

• The last operation op of S′ is not a complete operation in Hi. Recall that S′ ends with an operation op
that is complete in Hi+1 and Hi+1 extends Hi with one event only. Thus, the last event of Hi+1 is the
response of op. Thus, Hi and Hi+1 contain the same set of operations, except that op is incomplete in
Hi. Let S be the longest prefix of S′ that ends with a complete operation in Hi. Since S′ is legal, S is
also legal. By construction, every complete operation in Hi appears in S and no operation appears in
S if it does not appear in Hi. Thus, S is a linearization of Hi and (Hi, S,Q), where Q is the prefix of
Q′ that witnesses the legality of S, is a vertex in G.

Inductively, we derive that each vertex (Hi, S,Q) is reachable from vertex (H0, S0, Q0), where H0,
S0 and W0 are empty sequences. The only root vertex of G (a vertex that has no incoming edges) is thus
(H0, S0,W0).

Now we show that the outdegree of every vertex of G is finite. There are only finitely many operations
in Hi+1 and each linearization of Hi+1 is a permutation of these operations. Thus, since we only consider
objects with finite non-determinism, there can only be finitely many vertices of the form (Hi+1, S′, Q′).
Since all outgoing edges of any vertex (Hi, S,Q) are directed to vertices of the form (Hi+1, S′, Q′), the
outdegree of every such vertex is also finite.

By König’s lemma, G contains an infinite path starting from the root vertex: (H0, S0, Q0), (H1, S1, Q1),
We argue now that the limit S = limi→∞ Si is a linearization of the infinite limit history H . By construc-
tion, S respects the real-time order of H , otherwise there would be a vertex (Hi, Si, Qi) such that Si is not
equivalent to Hi or violates the real-time order of Hi. Also, S contains all complete operations of H and,
thus, S is equivalent to a completion of H . S is also legal since each of its prefixes is legal. Thus, S is
indeed a linearization of H , which concludes the proof that linearizability is a safety property. ✷Theorem 3

Thus, the set of linearizable histories is indeed prefix-closed and limit-closed, so in the rest of this book,
we only consider finite histories in the proofs of linearizability.

2.7 Alternatives to linearizability

Linearizability stipulates correctness with respect to a sequential execution: an operation needs to appear to
take effect instantaneously, respecting the sequential specification of the object. In this respect, linearizabil-
ity is for instance similar to sequential consistency and serializability. In order however to better understand
linearizability, it is important to look into the differences with these alternative properties.

31

2.7.1 Sequential consistency

Overview Linearizability stipulates that the witness sequential history S for a given history H should re-
spect the partial order relation→H on operations in H (also called the real-time order). Any two operations
op and op′ such op→H op′ should appear in that order in the witness history S, irrespective of the processes
invoking them and the objects on which they are performed.

Sequential consistency is a relaxation of linearizability. It only requires that the real-time order is pre-
served if the operations are invoked by the same process, i.e., S is only supposed to respect the process-order
relation.

Definition The definition of sequential consistency also uses the notions of history, sequential history,
complete history, as in Section 13.1. To simplify the presentation and without loss of generality, we only
consider complete histories (with no pending operations).

A history H is sequentially consistent if there is a “witness” history S such that:

1. H and S are equivalent,

2. S is sequential and legal. respect process-order).

Consider Figure 2.8. There are two processes p1 and p2 that share a queue Q. Process p1 invokes a
single operation, Q.Enq(a), while process p2 invoques two operations, first Q.Enq(b) and then Q.Deq(b).
The history depicted in the figure is however not linearizable. In fact, given that all the operations are totally
ordered according to real-time, the Q.Deq() operation issued by p2 should return element a whose enqueu-
ing was terminated before the enqueuing of b has started. However, the history is sequentially consistent:
The sequential history (described at the operation level)

S = [Q.Enq(b) by p2][Q.Enq(a) by p1][Q.Deq(b) by p2]

is legal and respects the process-order relation.
Both linearizability and sequential consistency require a witness sequential history. However, sequential

consistency does not require the sequential history to respect the occurrence order of operations issued by
different processes (and captured by the real-time order). In some sense, with linearizablity, after p1 has
enqueued an element a, p1 could inform p2 about the availability of a in the queue using some external
means of communication: p2 will then be sure to find a. This is because, unlike sequential consistency,
linearizability requires that each operation appears executed instantaneously within the operation’s interval.

Q.Enq(a)

Q.Enq(b) Q.Deq(b)

p1

p2

Figure 2.8: A sequentially consistent history

32

Non compositionality Clearly, any linearizable history is also sequentially consistent. As shown by the
example of Figure 2.8 however, the contrary is not true. It is then natural to ask whether sequential consis-
tency is not good enough to reason about the correctness of shared object implementations.

A major drawback of sequential consistency is that it is not compositional. To illustrate this, consider the
counter-example described in Figure 2.9. History H involves two processes accessing two shared queues
Q and Q′. It is easy to see that, when we consider each object in isolation, we obtain the histories H|Q
and H|Q′ that are sequentially consistent. Unfortunately, there is no way to witness a legal total order S
that involves the six operations: if p1 dequeues b′ from Q′, Q′.enq(a′) has to be ordered after Q′.enq(b′)
in a witness sequential history. But this means that (to respect process-order) Q.enq(a) by p1 is necessarily
ordered before Q.enq(b) by p2: consequently Q.Deq() by p2 should returns a for S to be legal. A similar
reasoning can be done starting from the operation Q.Deq(b) by p2. It follows that there can be no legal
witness total order: even though H|Q and H|Q′ are sequentially consistent, the whole history H is not.

Q.Enq(a) Q′.Enq(b′) Q′.Deq(b′)

Q′.Enq(a′) Q.Enq(b) Q.Deq(b)

p1

p2

Figure 2.9: Sequential consistency is not a compositional property

2.7.2 Serializability

Overview Linearizability requires individual operations to appear as if executed at a single point in time.
Sometimes it is important to ensure the same semantics for a group of operations. Such a group is called a
transaction.

A transaction is a sequence of operations that might complete successfully (commit) or abort. In short,
the execution of a set of concurrent transactions is correct if committed transactions appear to execute at
some indivisible point in time and aborted transactions do not appear to have been executed at all. This
requirement is called serializability . The point (again) is to reduce the difficult problem of reasoning about
concurrent transactions into the easier problem of reasoning about transactions that are executed one after the
other. For instance, if some invariant predicate on the set of shared objects is preserved by every individual
committed transaction, then it will be preserved by a serializable execution of transactions.

Definition To define serializability, the notion of history needs to revisited. Events are now associated with
objects and transactions. In short, processes are replaced by transactions. For each transaction, in addition
to the invocation and response events, two new events come into the picture: commit and abort events. These
are associated with transactions. At most one such event is associated with every transaction in a history. A
transaction without such event is called pending; otherwise the transaction is said to be complete (committed
or aborted). Adding a commit (resp., abort) event after all other events of a pending transaction is called
committing (resp., aborting) the transaction. A sequential history is a sequence of committed transactions.
We say that a history is complete if all its transactions are complete.

Let H be a complete history. H is serializable if there is a “witness” history S such that:

33

1. For each transaction T , S|T = H|T .

2. S is sequential and legal, and

Let H be a history that is not complete. H is serializable if we can derive from H a complete serializable
history H ′ by completing or removing pending transactions from H .

2.8 Summary

We partially addressed in this chapter the question: what does it mean for a shared object implementation
to be correct? The partial answer is: to be correct, the implementation needs to be linearizable, namely all
histories generated by the implementation need to be linearizable. In turn, a history is said to be linearizable
if, despite the processes invoking concurrently their operations on the shared objects, the responses returned
are those that could have been returned in a sequential histoy of the same objects, i.e., one where processes
invoke operations one after the other. Proving this typically boils down to determining a linearization point
for each operation in the given history. A central element here is that of a history, a sequence of events,
which captures the very notion of a computation.

As we explained in the chapter, linearizability has some notable features. First, it reduces the difficult
problem of reasoning about a concurrent system into the problem of reasoning about a sequential one. We
simpy need a sequential specification of an object to reason about its correctness. Linearizabiliy is also
composable, in the sense that it is enough to prove that each object in a set is linearizable to conclude that
the system composed of the set of objects is entirely linearizable. Last but not least, linearizability is also
non-blocking, which basically means that ensuring it does never force processes to wait for each other.

This brings us to the second part of the answer to the question above: what does it mean for a shared
object implementation to be correct? In fact, and as we will see in the next chapter, to be considered correct,
the implementation should not only be linearizable but also it should be wait-free. Whilst linearizability
covers safety, wait-freedom covers liveness.

2.9 Bibliographic notes

The notion of linearizability was initially introduced in the context of atomic read/write objects (registers)
by Lamport [64] and Misra [72]. The generalization to objects of any sequential type has been developed
by Herlihy and Wing under the name linearizability [52]. The notion of legal history was also discussed in
[92]

The notions of safety and liveness were introduced by Lamport [62] and refined by Alpern and Schnei-
der [4], originally defined for infinite histories only. Lynch reformulated the notions for finite histories and
proved that linearizability, when applied to deterministic objects is a safety property [70]. Guerraoui and
Ruppert [41] showed that linearizability is not limit-closed if objects can expose infinite non-determinism.
In other words, linearizability is not a safety property for objects with unbounded non-determinism.

The notion of sequential consistency has been introduced by Lamport [63]. The relation between lin-
earizability and sequential consistency was investigated in [7] and [79]. Examples of sequential consistency
algorithms can be found in [2, 7, 81]. The concept of serializability, underlying the notion of transaction, is
largely discussed in the database litterature, e.g., [9, 27, 38, 93, 27, 74]. Several variants of serialisability
were proposed such the notion of opacity which requires that even aborted transactions see a sequential
execution of transactions [34].

34

Chapter 3

Wait-freedom

3.1 Introduction

The previous chapter focused on the property of linearizability. This property basically requires possibly
concurrent operations to appear as if executed sequentially. Linearizability, when applied to objects with
finite non-determinism, is a safety property: it states what should not happen in an execution.

Such a property is in fact easy to satisfy. It is enough for an implementation to never return any response.
Since no operation would ever complete, the history would basically be empty and would be trivial to
linearize. But such an implementation would be useless. In fact, we need some progress property stipulating
that certains things should should happen in an execution, at least eventually. In our context, progress means
that, under certain conditions, invoked operations should return matching responses.

Ideally, we would like every invoked operation that to eventually return a matching response. But this
is impossible to guarantee if the process invoking the operation crashes, e.g., the process is paged out by
the operating system which could decide not to schedule it anymore. Nevertheless, one might require that
a response is returned to a process that is scheduled by the operating system to execute enough steps of
the algorithm implementing that operation. A step here can be an access to a low-level object during the
operation’s execution.

To express such requirement more precisely, we need to carefully define the notion of object implemen-
tation and zoom into the way processes execute the algorithm implementing the object, in particular how
their steps are scheduled by the operating system. We will in particular introduce the notion of implementa-
tion history: this is a lower level notion than that describing the interaction between the processes and the
object being implemented (and which we studied in the previous chapter). Accordingly, the first is called
a high-level history whereas the second is called a low-level history. The latter will be used to introduce
progress properties of shared object implementations, the strongest of these being wait-freedom.

3.2 Implementation

In order to reason about the very notion of implementation, we need to distinguish the very notions of
high-level and low-level objects.

35

3.2.1 High-level object and low-level object

To distinguish the shared object to be implemented from the underlying objects used in the implementation,
we typically talk about a high-level object and underlying low-level objects. (The latter are sometimes also
called base objects.) We talk accordingly about high-level and low-level types.

Similarly, to disambiguate, we will talk about primitives instead of operations as far as low-level objects
are concerned. That is, a process invokes operations on a high-level object and the implementation of these
operations requires the process to invoke primitives of the underlying low-level objects. When a process
invokes such a primitive, we say that the process performs a step.

The very notions of high-level and low-level are relative and depend on the actual implementation. An
object might be considered high-level in a given implementation and low-level in another one. The object
to be implemented is the high-level one and the objects used in the implementation are the low-level ones.
The low-level objects might capture basic synchronization constructs provided in hardware and in this case
the high-level ones are those we want to emulate in software (what we call implement). Such emulations
are strongly motivated by the desire to facilitate the programming of concurrent applications, i.e. to provide
the programmer with powerful synchronization abstractions encapsulated by high-level objects. Another
motivation is to reuse programs initially devised with the high-level object in mind in a system that does
not provide such an object in hardware. Indeed, multiprocessor machines do not all provide the same basic
synchronization abstractions.

Of course, an object O that is low-level in a given implementation A does not necessarily correspond
to a hardware synchronization construct. Sometimes, this object O has itself been obtained from a software
implementation B from some other lower objects. So O is indeed low-level in A and high-level in B.
Also, sometimes the low-level objects are assumed to be linearizable, and sometimes not. In fact, we will
even study implementations of objects that are not linearizable. As shown later in the book, it is sometimes
useful to first implement intermediate objects that are not linearizable, then implement the desired high-level
atomic objects on top of them.

3.2.2 Zooming into histories

So far, we represent computations using histories, as sequences of events, each representing an invocation
or a response on the object to be implemented, i.e, the high-level object.

History of an implementation In contrast, reasoning about progress properties requires to zoom into
the invocations and responses of the lower level objects of the implementations, on top of which the high-
level object is built. Without such zooming we may not be able to distinguish, for instance, a process that
crashes right after invoking a high-level object operation and stops invoking low-level objects, from one that
keeps executing the algorithm implementing that operation and invoking primitives on low-level objects. As
we pointed out, we might want to require that the latter completes the operation by obtaining a matching
response, but we cannot excpect any such thing for the former. In this chapter, we will consider as a history
of an implementation, the low-level history involving invocations and responses of low-level objects. This is
a refinement of the higher level history involving only the invocations and responses of the high-level object
to be implemented.

Consider the example of a fetch-and-increment high-level-object implementation described in Sec-
tion 3.4.1. As low-level objects, the implementations uses an infinite array T [, . . . ,∞] of TAS (test-and-set)
objects and a snapshot-memory object my-inc. The high-level history here is a sequence built from invoca-
tion and response events of fetch-and-increment operations, while the low-level history (or implementation

36

history) is a sequence of primitive events read(), update(), snapshot () and test − and − set().

The two faces of a process To better understand the very notion of a low-level history, it is important to
distinguish the two roles of a process. On the one hand, a process has the role of a client that sequentially
invokes operations on the high-level object and receives responses. On the other hand, the process also acts
as a server implementing the operations.

It might be convenient sometimes to think of the two roles of a process as executed by different entities
and written by two different programmers. As a client, a process invokes object operations but does not
control the way the low-level primitives implementing these operations are executed. The programmer
writing this part does typically not know how an object operation is implemented. As a server, a process
executes the implementation algorithm made up of invocations of low-level object primitives. This algorithm
is typically written by a different programmer who does not need to know what client applications will be
using this object.

Scheduling and asynchrony The execution of a low-level object operation is called a step. The interleav-
ing of steps in an implementation is specified by a scheduler (itself part of an operating system). This is
outside of the control of processes and, in our context, it is convenient to think of a scheduler as an adver-
sary. This is because, when devising an algorithm to implement some high-level object, one has to cope
with worst-case strategies the scheduler may choose to defeat the algorithm.

A process is said to be correct in a low-level history if it executes an infinite number of steps, i.e., when
the scheduler allocates infinitely many steps of that process. This “infinity” notion models the fact that
the process executes as many steps as needed by the implementation. Otherwise, if the process only takes
finitely many steps, it is said to be faulty. In this book, we only assume that faulty processes crash, i.e.,
permanently stop performing steps, otherwise they never deviate from the algorithm assigned to them. In
other words, they are not malicious (we also say they are not Byzantine).

Unless explicitly stated otherwise, the system is assumed to be asynchronous , i.e., the relative speeds of
the processes are unbounded: for all Φ ∈ N and processes p and q, there is an execution in which p takes Φ
steps while process q takes only one step. Basically, an asynchronous system is controlled by a very weak
scheduler, i.e., a scheduler that may prevent a correct process from taking steps for an arbitrary (but finite)
periods of time.

3.3 Progress properties

As pointed out above, a trivial way to ensure linearizability would be to do nothing, i.e., return no response to
any operation invocation. This would preclude any history that violates linearizability by simply precluding
any history with a response.

Besides this (clearly, meaningless) approach, a popular way to ensure linearizability is to use critical
sections (say using locks), preventing concurrent accesses to the same high-level shared object. In the
simplest case, every operation on a shared object is executed as a critical section. When a process invokes
an operation on an object, it first requests the corresponding lock, and the algorithm of the operation is
executed by the process only when the lock is acquired. If the lock is not available, the process waits until
the lock is released. After a process obtains the response to an operation, it releases the corresponding lock.
This trivially ensures linearizability because the linearization points of the operations of a history correspond
to the moment at which the lock is acquired for the operation.

37

As we discussed in Chapter 1, such an implementation of a shared object has an inherent drawback: the
crash of a process holding the lock on an object prevents any other process from completing its operation.
In practice, in this case, the process holding the lock might be preempted for a long period of time, while
all processes contending on the same object remain blocked. When processes are asynchronous (i.e., the
scheduler can arbitrarily preempt processes) which is the default assumption we consider, there is no way for
a process to know whether another process has crashed (or was preempted for a long while) or is only very
slow. In a system with a couple of processors and a small number of processes, this might not be considered
a big deal. But in a modern architecture with a very large number of cores, and hence processes, having a
single point of blocking might be considered unacceptable.

This book focuses on shared object implementations with progress properties that preclude situations
where the crash of some strict subset of processes can prevent every other process from making progress.
Hence, we preclude the use of critical sections or locks. Informally, we say that an implementation is lock-
based if it allows for a situation in which some process running in isolation after some finite execution is
never able to complete its operation. Taking a negation of this property, we state that an implementation
does-not-employ-locks if starting after any finite execution, every process can complete its operation in a
finite number of its solo steps. Intuitively, this property, called obstruction-freedom (or solo termination),
must be satisfied by any implementation where the crash of any process does not prevent other processes
from making progress. Below we discuss this property together and its stronger versions.

3.3.1 Solo, partial and global termination

Progress properties that preclude the usage of locks can be roughly classified as follows:

• Obstruction-freedom (also called Solo termination). An implementation of a shared object is obstruction-
free, if any of its operations is guaranteed to terminate (return a response) if it is eventually executed
without concurrency (assuming that the invoking process does not crash1).

We say that an operation is “eventually executed without concurrency” if there is a time after which
the only process to take steps is the process that invoked that operation. Note that this does not
prevent other processes from having started and not yet finished operations on the same object (this is
for example the case of a process that crashed in the middle of an operation on the object).

Note that obstruction-freedom allows executions in which several processes invoking operations on
the same object forever contend on the internal representation of the object without terminating.

As we observed earlier, obstruction-freedom precludes the use of locks.

• Non-blockingness. This is a partial termination property that is strictly stronger than obstruction-
freedom. It states the following: if several processes execute operations on the same object and do not
crash, at least one of them terminates its operation. (This is of course despite asynchrony and process
crashes.)

Intuitively, non-blockingness can be interpreted as deadlock-freedom despite asynchrony and crashes.

• Wait-freedom. This is a global termination property that states the following: any process that ex-
ecutes an operation on the object (and does not crash), terminates its operation [43]. Wait-freedom
is strictly stronger than non-blockingness and can be interpreted as starvation-freedom despite asyn-
chrony and crashes.

1Let us recall that “a process does not crash” means that “it executes an infinite number of steps”.

38

3.3.2 Bounded termination

Wait-freedom, the strongest among the progress properties considered above, does not stipulate a bound on
the number of steps that a process needs to execute before obtaining a matching response for the high-level
object operation it invoked. Typically, this number can depend on the behavior of the other processes. For
example, it can be small if no other process performs any step, and increases when all processes perform
steps (or the opposite), while remaining always finite, regardless of the number and timing of crashes.

• An implementation satisfies the property of bounded wait-freedom if there exists B ∈ N such that in
any low-level history every process p that invokes an operation receives a matching response within
B of its own (not necessarily consecutive in the execution) steps.

In other words, there is no prefix of a low-level history in which a process invokes an operation and
executes B steps without obtaining a matching response.

Showing that an implementation is bounded wait-free consists in exhibiting an upper bound on the
number of steps needed to return from any operation. That upper bound is usually defined by a function on
the number n of processes (e.g., O(n2)). One can similarly define notions like bounded solo termination or
bounded partial termination.

3.3.3 Other progress properties

Of course, we did not give an exhaustive list of possible progress properties. We can think of many other
conditions under which an invoked operation might return.

One class of such conditions is based on the level of contention, i.e., the number of “active” processes
that concurrently invoke operations on the implemented shared object. We distinguish interval contention
and step contention. An operation op accounts interval contention in a given execution if op overlaps with
another operation op′ in the corresponding history H . Further, op encounters step contention if another
process took at least one step on behalf of another operation op′ during the interval of op in H . Step
contention implies interval contention, but not vice versa.

For example, the progress property of obstruction-freedom means that every operation that is executed
in the absence of step contention returns in a finite number of its steps. Similarly, we may only require
that an operation returns if it runs in the absence of interval contention. Note that the latter property can
be implemented with a single global lock: an operation grabs the lock on the shared object, updates the
state of the object, and releases the lock before returning the response. We can also generalize wait-freedom
to k-obstruction-freedom that expects that an operation returns in a finite number of its steps if at most k
processes take steps during the operation’s interval.

In Chapter ??, we express other conditions on the executions in which progress must be ensured in the
form of generic adversaries.

3.4 Linearizability and wait-freedom

In this paper, we primarily focus on wait-free linearizable implementations.

3.4.1 A simple example

The algorithm in Figure 3.1 is a simple wait-free linearizable implementation. The algorithm implements a
fetch-and-increment (FAI object using an infinite array of TAS objects T [1, . . . ,∞] and a snapshot memory

39

My inc.
An FAI object stores an integer value exports one operation fetch-and-increment() that atomically incre-

ments the value of the object and returns the previous value.
A TAS object exports one atomic operation test-and-set() that returns 0 or 1 and guarantees that the first

invocation of test-and-set() on the object returns 1 and all subsequent invocations return 0. Intuitively, a
TAS object allows a single process to distinguish itself from the rest of the system.

Finally, a snapshot memory can be seen as an array of n registers, one for each process, such that
each process pi can atomically write a value v to its dedicated register with an operation update(i, v) and
atomically read the content of the array using an operation snapshot(). 2

Shared
T [1, . . . ,∞]: n-process TAS objects
My inc[1, . . . ,∞]: snapshot memory, initialized to 0

Local
entry, c (initially 0), S

operation fetch-and-increment():
c← c+ 1;
My inc.update(i, c);
S ← My inc.snapshot();
entry← sum(S)
while T [entry].test-and-set() ̸= 0 do

entry← entry− 1;
end do;
return(entry− 1)

Figure 3.1: Fetch-and-increment implementation: code for process pi

The algorithm in Figure 3.1 works as follows. To increment the value of the object, a process first
increments its dedicated register in the snapshot memory My inc. Then it takes a snapshot of the memory
and evaluates entry as the sum of all its elements. Then, starting from the T [entry] down to 1, the process
invokes operations test-and-set() some TAS object returns 1. The index of this TAS object minus 1 is then
returned by fetch-and-increment().

Intuitively, if a process pi evaluates its local variable entry to ℓ, it means that at most ℓ processes have
previously incremented their positions and, thus, at least one TAS object in the array T [1, . . . , ℓ] is “reserved”
for pi (pi is one of these ℓ processes). Every process that increments its position in My inc later will obtain
a strictly higher value of entry. Thus, eventually, every operation obtains 1 from one of the TAS objects and
returns. Moreover, since a TAS object returns 1 to exactly one process, every returned value is unique. Try
to see that it guarantees that every history of this implementation is linearizable.

Notice that the number of steps performed by a fetch-and-increment() operation is finite but in general
unbounded (the implementation is not bounded wait-free). This is because an unbounded number of in-
crements can be performed by other processes in the time lag between a process increments it position in
My inc and the moment it takes a snapshot of My inc. It is however not difficult to modify the algorithm so
that every operation performs O(n2) steps.

2In Chapter 8, we show that snapshot memory can be wait-free implemented using only read-write registers.

40

3.4.2 A more sophisticated example

Proving that a given implementation satisfies linearizability and wait-freedom can be extremely tricky some-
times. To illustrate this, consider the algorithm in Figure 3.2 that intends to implement an unbounded FIFO
queue. The sequential specification of this object has been given in Section ?? of Chapter 2.

The algorithm is quite simple. The system we consider here is made up of producers (clients) and
consumers (servers) that cooperate through an unbounded FIFO queue. A producer process repeats forever
the following two statements: it first prepares a new item v, and then invokes the operation Enq(v) to
deposits v in the queue. Since we assume that the queue is unbounded, the operation Enq(v) is total.

Similarly, a consumer process repeats forever the following two statements: it first withdraws an item
from the queue by invoking the operation Deq(), and then consumes that item. If the queue is empty, then
the default value ⊥ is returned to the invoking process. (This default value that cannot be deposited by a
producer process.) Since we do not preclude the possibility of returning ⊥, the Deq() operation is also total.

The algorithm depicted in Figure 3.2 relies on an array Q[0, . . . ,∞), each entry of the array initialized
to ⊥, used to store the items of the queue. Also, the implementation a shared variable NEXT (initialized to
1) used as a pointer to the next available slot of the array Q for a new value to be deposited.

To enqueue an item to the queue, the producer first locates the index of the next empty slot in the array
Q, reserves it, and then stores the item in that slot. To dequeue a value, the consumer first determines the
last entry of the array Q that has been reserved by a producer. Then, it reads the elements of the array
Q in ascending order until it finds an item different from the default value ⊥. If it finds one, it returns it.
Otherwise, the default value is returned.

The variable NEXT is provided with two primitives denoted read() and fetch&add(). The invocation
NEXT .fetch&add(x) returns the value of NEXT before the invocation and adds x to NEXT . Similarly,
each entry Q[i] of the the array is provided with two primitives denoted write() and swap(). The invocation
Q[i].swap(v) writes v in Q[i] and returns the value of Q[i] before the invocation.

The execution of the read(), write(), fetch&add() and swap() primitives on the shared base objects
(NEXT and each variable Q[i]) are assumed to be atomic. The primitives read() and write() are implicit
in the code of Figure 3.2 (they are in the assignment statements denoted “←”).

The algorithm does not use locks, so no process can block other processes forever by crashing. Further-
more, each value deposited in the array by a producer will be withdrawn by a swap() operation issued by a
consumer (assuming that at least one consumer is correct).

operation Enq(v):
in← NEXT .fetch&add (1);
Q[in]← v;
return ()

operation Deq():
last← NEXT − 1;
for i from 0 until last do

aux← Q[i].swap (⊥);
if (aux ̸= ⊥) then return (aux) end if

end do;
return (⊥)

Figure 3.2: Enqueue and dequeue implementations

It is easy to see that the implementation is wait-free: every process completes every its operation in a
finite number of its own steps: the number of steps performed by Enq() is two, and the number of steps

41

performed by Deq() is proportional to the queue size as evaluated in the first line of its pseudocode.
But is the implementation linearizable? Superficially, yes: if no dequeue operation returns ⊥, we can

order operations based on the times when the corresponding updates of Q[] (a write performed by Enq() or
a successful swap performed by Deq()) takes place.

However, if a dequeue operation returns ⊥ it is not always possible to find the right place for it in a legal
linearization. For example, consider the following scenario:

1. Process p1 performs Enq(x). As a result, the value of NEXT is 1, and Q[0] stores x.

2. Process p2 starts executing Deq() and reads 1 in NEXT .

3. Process p1 performs Enq(y). The value of NEXT is now 2, Q[0] stores x, and Q[1] stores y.

4. Process p3 performs Deq(), reads 2 in NEXT , finds x in Q[0] and returns x. The value of Q[0] is ⊥
now.

5. Finally, p2 reads ⊥ in Q[0] and completes Deq() by returning ⊥.

In this execution: we have the following partial order on operations: p1.Enq(x) → p1.Enq(y) →
p3.Deq(x), and p1.Enq(x)→ p2.Deq(⊥). Thus, there are only three possible ways to linearize p2.Deq(⊥):
right after p1.Enq(x), right after p1.Enq(y) or right after p3.Deq(). In all three possible linearizations, the
queue is non-empty when p2 invokes Deq(), and thus ⊥ cannot be returned.

How to fix this problem? One solution is to sacrifice linearizability and not to consider operations
returning ⊥ in a linearization.

Another solution is to sacrifice wait-freedom and instead of returning ⊥ in the last line of the Deq(),
repeat the same procedure (evaluating NEXT and going through the first NEXT elements in Q[]) over
and over until a non-⊥ value is found in Q[]. As long as a producer keeps adding items to the queue, every
Deq() operation is guaranteed to eventually return.

3.4.3 Liveness

Recall that safety properties (Section 2.6) are used to declare what it means for an implementation to reach
an undesired state. To show that an implementation satisfies a safety property P , it is sufficient to check if
each of its finite executions satisfies P .

In contrast, a liveness property ensures that the implementation eventually reaches some desired state.
Formally, we say that P is a liveness property if any finite execution has an extension in P . Hence, no matter
what state our implementation is in, there is always a chance to reach a desired state in some extension of
the current execution. To show that an implementation satisfies a liveness property P , we should thus show
that all its infinite executions are in P .

It appears that every property can be represented as an intersection of a safety property and a liveness
property [70]. In this book, we focus on implementations that satisfy linearizability (atomicity) and wait-
freedom, where linearizability is a safety property (Section 2.6) and wait-freedom, as we can easily see, is a
liveness property. Indeed, we can only violate wait-freedom in an infinite execution: every finite execution
in which an operation invoked by a given process has an extension in which the operation returns.

Similarly, non-blockingness and obstruction-freedom are also liveness properties. For example, the only
way to violate obstruction-freedom is to exhibit an execution in which a process takes infinitely many steps
without completing an invoked operation.

42

It is interesting to notice that bounded wait-freedom is, in fact, a safety property. Indeed, B-bounded
wait-freedom is violated in a finite execution where an operation does not return after B steps of the process
that invoked it. It is not difficult to see that B-bounded wait-freedom is prefix-closed and limit-closed.
Therefore, to prove that an implementation is, e.g., linearizable and B-bounded wait-free, it is enough to
consider its finite executions.

3.5 Summary

Linearizability is not enough to define the correctness of a shared object implementation. Some liveness
property is also needed to stipulate that responses should be returned.

We defined in this chapter three liveness properties: solo-termination (obstruction-freedom), partial-
termination (non-blockingness) and wait-freedom (global termination). All of them exclude the usage of
locks. The first one simply says that a process that eventually runs alone with no contention will get re-
sponses. The second one requires that a response is returned to some process even if there is contention.
The last one, wait-freedom, is the strongest. Responses should be returned for every process that keeps
executing low-level steps (i.e., is correct).

Bibliographic notes

The notion of wait-freedom originated in the work of Lamport [61]. An associated theory was developed by
Herlihy [43].

The notion of solo-termination was presented implicitly in [28]. It has been introduced as a progress
property in [46] under the name obstruction-free synchronization. That notion has been formalized in [6].
More developments on obstruction-freedom can be found in [29]. The minimal knowledge on process
failures needed to transform any solo-terminating implementation into a wait-free one was investigated
in [39]. Other progress conditions, including those that can be implemented with locks, are discussed in [50,
Chap. 3]. A systematic perspective on progress conditions is presented in [51].

The algorithms in Figures 3.1 and 3.2 were proposed by Afek et al. [3]. A blocking variant of the
algorithm in Figure 3.2 in which⊥ is never returned was given and proved correct by Herlihy and Wing [52].

3.6 Exercises

1. Prove that bounded wait-freedom is a safety property.

43

44

Part II

Registers

45

Chapter 4

Definitions

4.1 The many faces of a register

This part of the book is devoted to the construction of the simplest shared objects that are usually considered,
namely shared storage objects that provide their users with two basic operations: read and write. These
objects are usually called registers, and linerarizable registers are called atomic registers. In particular, we
focus on how to wait-free implement such atomic registers using “weaker” registers. Again, the picture
to have in mind is one where the weak registers are provided in hardware and the strongest registers are
emulated in software.

This chapter considers different kinds of registers, parameterized over three dimensions:

(a) The capacity of a register, i.e., the range of values the register can store. This can vary from binary
(only holding 0 or 1) to infinite-value;

(b) The access pattern to a register, i.e., the number of processes that can read (resp., write in) the register.
This can vary from 1-writer 1-reader to multi-writer multi-reader.

(c) The behavior of a register in face of concurrency, from providing no correctness guarantees in the
presence of contention to linearizability.

The weakest kind of a shared register is therefore one that can only store one bit of information, can
be read by a single process p, can be written by a single process q, and does not ensure any guarantee
on the value read by p when p and q access the register concurrently. We will show how, using multiple
such registers, we can construct an atomic register that can store an arbitrary number of values and be read
and written by any number of processes. This construction will be presented incrementally, going through
intermediate kinds of registers, interesting in their own right.

An algorithm used to implement a register of a given kind from a register of another kind is sometimes
called transformation or reduction, the former (high-level) register being “reduced” to the latter one, used as
a base object in the implementation. We also say that the high-level register is emulated by the second one.

Capacity of a register. The simplest kind of register is the binary register: it can only store a single bit, 0
or 1. We talk about a shared bit, or simply a bit.

More generally, a multi-valued register may store two or more distinct values. A multi-valued register
can be bounded or unbounded. A bounded register is one whose value range contains exactly b distinct

47

values (e.g., the values from 0 until b−1) where b is typically a constant known by the processes. Otherwise
the register is said to be unbounded.

A register that can contain b distinct values is said to be b-valued. Its binary representation requires
B = ⌈log2 b⌉ bits. Its unary representation is more expensive as it requires b bits (the value v being then
represented with a bit equal to 1 followed by v − 1 bits equal to 0).

Access patterns. This dimension concerns the sets of processes that can read from or write into the reg-
ister. A register is called single-writer, denoted 1W, (resp., single-reader, denoted 1R) if only one specific
process, known in advance, and called the writer (resp., the reader) can invoke a write (resp., read) opera-
tion on the register. A register that can be written (resp., read) by multiple processes is called a multi-writer
(resp., multi-reader) register. Such a register is denoted MW (resp., MR).

For instance, a binary 1WMR register is a register that (a) can contain only 0 or 1, (b) can be read by all
the processes but (c) written by a single process.

The concurrent behavior of a register. When accessed sequentially, the behavior of a register is simple
to define: a read invocation returns the last value written. When accessed concurrently, the semantics is
more involved and several variants have been considered. We overview these variants in the following.

4.2 Safe, regular and atomic registers

We consider three kinds of registers that vary according to their behavior in the presence of concurrent
accesses. The differences are depicted in the value returned by a read operation invoked on the register
concurrently with a write operation. When there is no concurrency, the behavior is the same in all cases.

4.2.1 Safe registers

A safe register is the weakest traditionally considered in distributed computing. It supports a single writer,
and, thus, since we assume that every process is sequential, allows for no concurrent writes.

• A read that is not concurrent with a write returns the last written value.

For the one-writer case, all the registers discussed below preserve this property. It is important to see
that, in the presence of concurrency, the value returned by a read operation on a safe register can possibly
be a value that has never been written. Without loss of generality, the only constraint we impose is that the
value needs to be in the range of the register.

An interesting special case is the binary 1W1R (one-writer-one-reader) safe register, that may be seen
as a bit flickering under concurrency. The value of such a register is unstable (flickers between 0 and 1) as
long as a write operation is taking place and only stabilizes (on the written value) when the write completes.

An example of the behavior of a binary safe register (i.e., a safe bit) is depicted in Figure 4.1 and
Table 4.1. Here we consider a 1W1R safe register: only one reader is involved. The writer process is
denoted pw and the reader process is denoted pr, w(v) stands for a write operation that writes the value
v, and r(v) stands for a read operation that returns the value v. As the first and the fourth read operations
do not overlap a write operation, they return the last written value namely, 1 for the first read and 0 for the
fourth one. The values returned by the other read operations are denoted a, b and c. All these read operations
overlap a write operation and can consequently return any of the values that the register can contain (this

48

pw
w(0) w(0)

pr
r(0)r(a)r(1) r(c)r(b)

w(1)

History Ĥ of the invocation/response events

Figure 4.1: History of a register

Value returned a b c

Safe 1/0 1/0 1/0
Regular 1/0 1/0 0
Atomic 1 1/0 0

0 0 0

Table 4.1: Safe, regular and atomic registers

is denoted 1/0 as the register is binary in Table 4.1). So, the last read can return 1 even if the previous
value was 0 and the concurrent operation writes the very same value 0. This gives eight possible correct
executions.

w(1) w(0) w(0)

r(1) r(a) r(b) r(0) r(c)

Figure 4.2: History of a safe register

Figure 4.2 depicts the corresponding history at the operation level (i.e., the partial order on the operations
denoted →H). The transitive dependencies are not indicated. The unordered operations (e.g., the second
w(0) operation issued by pw and r(c) issued by pr) are concurrent.

4.2.2 Regular registers

A regular register is also defined for the case of a single writer. It is a safe register that satisfies the following
additional property:

• A read that is concurrent with one or several writes returns the value written by a concurrent write or
the value written by the last preceding write.

To illustrate the notion of a the regular register, let us again consider Figure 4.1. The values that can be
possibly returned by a regular register are put in the “Regular” line of Table 4.1. The second read operation
can return either the previously written value or the concurrently written value of the concurrent write,

49

namely, 0 or 1. It is the same for the third read operation. In contrast, as the last write does not change the
value of the register, the last read can return only the value 0. This means that 4 possible correct executions
can be determined for Figure 4.1.

A read overlaps several write operations can return the value written by any of these writes as well as
the value of the register before these writes. This is depicted in Figure 4.3 where value a returned by the
second read can be any of 1, 2, 3, 4 or 5.

pw
w(1)

r(1) r(a)

w(2) w(3) w(4) w(5)

pr

Figure 4.3: History of a regular register

4.2.3 Atomic registers

An atomic register is a MWMR register whose execution histories are linearizable. It is possible to totally
order all its read and write operations in such a way that this total order Ŝ respects their real-time occurrence
order and each read returns the value written by the last write operation that precedes it in Ŝ (legality
property).

Look at Figure 4.1 again. The second read r(a) is concurrent with the w(0) operation. Given that the
previous value of the register is 1, the returned value a can be either 1 or 0. If it returns 1 (the value written
by the last preceding write), then the third read r(b) can return either 1 or 0. In contrast, if the second
read returns 0 (the value written by the concurrent write), b can only be 0, as the second read indicates that
the value 1 is now overwritten by the “new” value 0. Finally, the last read r(c) can only return the value
0. It is easy to see that there are three possible executions when the registers are binary and atomic. The
possible values returned by the three read operations concurrent with a write operation are summarized in
the “Atomic” line of Table 4.1.

4.2.4 Regularity and atomicity: a reading function

One important difference between regularity and atomicity is that a regular register allows for new/old
inversion. In case two read operations are concurrent with a write, the first read may return the concurrently
written value while the second read may still return the value written by a preceding write. Such a history is
not allowed by an atomic register, since the second read must succeed the first one in any linearization, and
thus must return the same or a “newer” value.

For example, the history depicted in Figure 4.1 and Table 4.1, the history is correct with a = 0 and
b = 1 with respect to regularity and incorrect with respect to atomicity. Indeed, here r(a) returns the “new”
value (a = 0), while r(b) returns the “old” value (b = 1). You can easily check that such a history cannot
be linearized.

Formally, we capture the difference between (one-writer) regular and atomic registers using the notion
of a reading function. A reading function is associated with a given history and maps every returned read
operation r(x) to some w(x) in that history. Without loss of generality, we assume that every history starts
with a sequential operation w(x0) that writes the initial value x0.

50

We say that a reading function π associated with a history H is regular if (here r and w with indices
denote read and write operations in H):

A0 : ∀ r: ¬(r →H π(r)). (No read returns a value not yet written.)

A1 : ∀ r, w in H: (w →H r)⇒
(
π(r) = w ∨ w →H π(r)

)
. (No read returns an overwritten value.)

We say that a reading function is atomic if it is regular and satisfies the following additional property:

A2 : ∀ r1, r2: (r1→H r2)⇒
(
π(r1) = π(r2) ∨ π(r1)→H π(r2)

)
. (No new/old inversion.)

We show now determining a regular reading function is exactly what we need to show that a history can
be produced by a regular register.

Theorem 4 H is a history of a 1WMR regular register if and only if it has a regular reading function π.

Proof Suppose that H is a history of a regular register. We define π as follows. For any r, a read operation
in H that returns x, we define π(r) as the last write operation w(x) in H such that ¬(r →H w(x). Since by
the definition of a regular register, x is the argument of the latest preceding write or a concurrent write, it is
easy to see that π satisfies properties A0 and A1 above.

Now suppose that H allows for a regular reading function. Let r be a complete read operation in H that
returns x. Then there exists a write w(x) in H that either precedes or is concurrent with r in H (A0) and is
not succeeded by a write that precedes r in H (A1). Thus, r returns either the last written or a concurrently
written value. ✷Theorem 4

Now we show that a history can be produced by an atomic register if and only it can be associated with
an atomic reading function.

Theorem 5 H is a history of an atomic 1WMR register if and only if it allows for an atomic reading function
π.

Proof Given a linearizable history H , we construct an atomic reading function as follows. Take any S,
a linearization of H and define π(r) as the last write that precedes r in S. By construction, π(r) satisfies
properties A0, A1 and A2.

Now suppose that H allows for an atomic reading function π. We use π to construct S, a linearization
of H , as follows.

We first construct S as the sequence of all writes that took place in H in the order of appearance. Since
we have only one writer, the writes are totally ordered. (In case the last write is incomplete, we add to S its
complete version.) Then we put every complete operation r immediately after π(r), making sure that:

if π(r1) = π(r2) and r1→H r2, then r1→S r2.

Clearly, S is legal: the reading function guarantees that π(r) writes the value read by r, and thus every
read in S returns the last written value.

To show that →H⊆→S , we consider the following four possible cases. Here w1 and w2 denote write
operations, while r1 and r2 denote read operations.

• w1→H w2. Since S preserves the real-time occurrence order of writes in H , we have w1→S w2.

51

• r1→H r2. By A2, we have π(r1) = π(r2) or π(r1)→H π(r2).

If π(r1) = π(r2), as r1 precedes r2 in H , the way S is constructed implies that r1 is ordered before
r2 in S and, thus, r1→S r2.

If π(r1)→H π(r2), then, since S preserves the real-time occurrence order of writes in H and r1 and
r2 are placed just after π(r1) and π(r2), respectively, in S, we have r1→S r2.

• r1 →H w2. By A0, either π(r1) is concurrent with r1 or π(r1) →H r1. Since r1 →H w2 and all
writes are totally ordered, we have π(r1)→H w2. By construction of S, since π(r1) is the last write
preceding r1 in S, r1→S w2.

• w1→H r2. By A1 we have π(r2) = w1 or w1→H π(r2).

Suppose that π(r2) = w1. As r2 is placed just after π(r2) in S, we have π(r2) = w1→S r2.

Suppose that w1→H π(r2). Again, by the way S is constructed, we have w1→H π(r2)⇒ w1→S

π(r2). Further, π(r2) →S r2 (r2 is ordered just after π(r2) in S), we obtain (by transitivity of→S)
w1→S r2.

Finally, since S contains all complete operations of H and preserves →H , H is indistinguishable from
S for every process, modulo the last incomplete read operation (if any).

Thus, S is a legal sequential history that is equivalent to a completion of H and preserves→H . ✷Theorem 5

We say that a history of a regular register exhibits new/old inversion if it allows for no atomic reading
function. Notice that a history may allow for multiple reading functions, some of them atomic and some
of them only regular. Theorems 4 and 5 imply that an atomic register can be seen as a regular register that
never suffers from new/old inversion.

Since atomicity (linearizability) is a local property, a set of 1WMR regular registers behave atomically
if each of them independently from the others is written by a single process and never exhibits no new/old
inversion.

52

Chapter 5

Bounded register transformations

As we have seen, the space of read-write registers is very rich and has at least three dimensions: capacity,
access patterns, consistency. A natural question is whether “strong” registers can be constructed in software
(emulated) using “weak” ones. It turns out that it is indeed possible to emulate a multi-valued MWMR
atomic register using binary 1W1R safe registers.

In general, what we call a (register) transformation is here an algorithm that builds a register R with cer-
tain properties, called a high-level register, from other registers, called low-level or base registers, featuring
different (weaker) properties.

For example, we discuss how to obtain a regular high-level register from safe base registers, 1WMR
register from 1W1R registers, or multi-valued register from binary registers.

Transformations can also vary in their complexity, i.e., the number and size base register. For example,
the number of base registers used by a transformation algorithm may be proportional to the number of
readers and writers. Also, a transformation may assume base registers of bounded capacity or unbounded
base registers. Naturally, assuming only bounded registers is more realistic but it precludes using shared
sequence numbers that can grow without bound.

In this and the subsequent chapter, we proceed as follows.

1. We first present two simple (bounded) algorithms. The first constructs a 1WMR safe register out of
a number of 1W1R safe registers. The second builds a binary 1WMR regular register out of a binary
1WMR safe register. Combining the two, we can implement a binary 1WMR regular register using a
number of binary 1W1R safe registers.

2. We then show how to transform a binary 1WMR register that provides certain semantics (safe, regular
or atomic) into a multi-valued 1WMR register that preserves the same semantics. The three transfor-
mations we present here are all bounded. Again, by combining the algorithms obtained so far, we can
implement a multi-valued 1WMR regular register using a number of binary 1W1R safe registers.

3. We finally show how to transform a 1W1R regular register into a MWMR atomic register. We go
through three intermediate (unbounded) transformations: from a 1W1R regular register into a 1W1R
atomic register, then to a 1WMR atomic register, and finally to a MWMR register. Using all these
transformations, we can construct a multi-valued MWMR atomic register using binary 1W1R safe
registers.

53

5.1 Two simple bounded transformations

In this section, we focus on safe and regular registers. Recall that these kinds of registers are defined for
systems with a single writer for each register. First we present an algorithm that uses single-reader registers,
being safe or regular, to emulate a multiple-reader register. Second we show how a safe multiple-reader bit
can be turned into a regular one.

5.1.1 Safe/regular registers: from single reader to multiple readers

The idea here is to emulate the multi-reader register using several single-reader registers. In the transfor-
mation, described in Figure 5.1, the constructed register R is built from n 1W1R base registers, denoted
REG[1 : n], one per reader process. (We consider a system of n processes and all are potential readers.)
A reader pi reads the base register REG[i] it is associated with, while the single writer writes to every base
register, one by one (in any order).

It is important to see that this transformation is bounded: it uses no additional control information
beyond the actual value stored, and each base register can be of the same capacity as the multiple-reader
register we want to build.

An interesting feature of this algorithm is that replacing the base safe 1W1R registers with regular ones,
we obtain an emulation of a regular 1WMR register.

operation R.write(v):
for all j in {1, . . . , n} do REG[i]← v end do;
return ()

operation R.read() issued by pi :
return (REG[i])

Figure 5.1: From 1W1R safe/regular to 1WMR safe/regular (bounded transformation)

We show now that the algorithm is correct:

Theorem 6 Given one safe (resp., regular) 1W1R base register per reader, the algorithm described in Fig-
ure 5.1 implements a 1WMR safe (resp., regular) register.

Proof Assume first that base 1W1R registers are safe. It follows directly from the algorithm that a read of
R (i.e., R.read()) that is not concurrent with a R.write() operation returns the last value deposited in the
register R. The obtained register R is consequently safe while being 1WMR.

Let us now suppose that the base registers are regular. We will argue that the high-level register R
constructed by the algorithm is a 1WMR regular one. Since a regular register is safe, the argument above
implies that R is safe. Hence, we only need to show that a read operation R.read() that is concurrent with
one or more write operations returns a concurrently written value or the last written value.

Let pi be any process that reads some value from R. When pi reads the base regular register REG[i] pi
returns (a) the value of a concurrent write on REG[i] (if any) or (b) the last value written to REG[i] before
such concurrent write operations. In case (a), the value v obtained is from a R.write(v) that is concurrent
with the R.read() of pi. In case (b), the value v obtained can either be (b.1) from a R.write(v) that is
concurrent with the R.read() of pi , or (b.2) from the last value written by a R.write() before the R.read()
of pi. Thus, the constructed register R is regular. ✷Theorem 6

54

p1

p2

pw

REG[2]← 2

return(REG[1])

REG[1]← 2

inv[R.write(2)] resp[R.write(2)]

return(REG[2])

Figure 5.2: A counter-example

It is important to see that the algorithm of Figure 5.1 does not implement a 1WMR atomic register
even when every base register REG[i] is a 1W1R atomic register. This is because the transformation may
exhibit new/old inversion, even if the base registers preclude it. To show this, let us consider the history
described in Figure 5.2. The example involves one writer pw and two readers p1 and p2. Assume the register
R implemented by the algorithm contains initially value 1 (which means that we initially have REG[1] =
REG[2] = 1). To write value 2 in R, the writer first executes REG[1] ← 2 and then REG[2] ← 2.
Concurrently, p1 reads REG[1] and returns 2, and then p2 reads REG[2] and returns 1. Clearly, there is
new/old inversion here: the read by p1 returns the new value, and the subsequent read by p2 returns the old
value.

5.1.2 Binary multi-reader registers: from safe to regular

Now we emulate a regular binary register using a single safe binary register, i.e., construct a regular bit out
of a safe one. The algorithm is very simple, precisely because we want to implement a register storing only
one out of two values (0 or 1).

The difference between a safe and a regular register is only visible in the face of concurrency. That is,
the value to be returned in the regular case has to be a value concurrently written or the last value written,
while a safe register is allowed to return any value in the range (0 or 1 in our case). To illustrate the issue,
assume that the regular register is directly implemented using a safe base register: every read (resp. write)
on the high-level register is directly translated into a read (resp. write) on the base (safe) register. Assume
this register has value 0 and there is a write operation that writes the very same value 0. As the base register
is only safe, it is possible that a concurrent read operation returns value 1, which might have never been
written.

The way to fix this problem is to allow the writer to actually write to the base register only if the writer
intends to change the value of the high-level register. This way a concurrent read can obtain any value in
{0, 1} (remember that only two values are possible), i.e., either the previously written or a concurrently
written value, which complies with the regularity semantics.

The transformation algorithm is presented in Figure 5.3. Besides a safe register REG shared between
the reader and the writer, the algorithm requires that the writer maintains a local variable prev val that
contains the most recent value that has been written in the base safe register REG. Before writing a value
v in the high-level regular register, the writer checks if this value v is different from the value in prev val

55

and, only in that case, v is written in REG.

operation R.write(v):
if (prev val ̸= v) then REG← v;

prev val← v end if;
return ()

operation R.read() issued by pi :
return (REG)

Figure 5.3: From a binary safe to a binary regular register (bounded transformation)

Theorem 7 Given a 1WMR binary safe register, the algorithm described in Figure 5.3 implements a 1WMR
binary regular register.

Proof As the underlying base register is safe, a read that is not concurrent with a write returns the last
written value. As the underlying base register REG always alternates between 0 and 1, a read concurrent
with one or more write operations returns the value of the base register before these write operations or one
of the values written by such a write operation. Thus, the implemented register is regular. ✷Theorem 7

Notice that the transformation does not work for registers that store 3 or more values. The transformation
does not implement an atomic register either as it does not prevent a new/old inversion. Notice also that If
the safe base binary register is 1W1R, then the algorithm implements a 1W1R regular binary register.

5.2 From binary to b-valued registers

This section presents three transformations from binary registers to multi-valued registers. A register is
b-valued if in the range of values it can store has cardinality b; we assume here that b > 2.

Our transformations preserve the semantics of the base registers in the following sense: if the base
bits have semantics X (safe, regular or atomic), then the resulting high-level (b-valued) registers also have
semantics X. Also, the transformations are bounded. There is a bound on the number of base registers used,
as well as on the amount of memory needed within each register.

5.2.1 From safe bits to safe b-valued registers

Overview. The first algorithm we present here uses a number of safe bits in order to implement a multi-
valued register R. We assume that the capacity of R is an integer power of 2, i.e., 2B for some integer B. It
follows that (with a possible pre-encoding if the b = 2B distinct values are not the consecutive values from
0 until b−1) the binary representation of a value stored in R requires exactly B bits. Any combination of B
bits thus identifies a value in the range of R (notice that this would not be true if b was not an integer power
of 2).

The algorithm uses an array REG[1 : B] of 1WMR safe bit registers to store the current value of R.
Given µi = REG[i], the binary representation of the current value of R is µ1 . . . µB. The corresponding
transformation algorithm is given in Figure 5.4.

56

operation R.write(v):
let µ1 . . . µB be the binary representation of v;
for all j in {1, . . . , B} do REG[j]← µj end do;
return ()

operation R.read() issued by pi:
for all j in {1, . . . , B} do µj ← REG[j] end do;
let v be the value whose binary representation is µ1 . . . µB ;
return (v)

Figure 5.4: Safe register: from bits to b-valued register

Space complexity. As B = log2(b), the memory cost of the algorithm is logarithmic with respect to the
size of the value range of the constructed register R. This follows from the binary encoding of the values of
the high level register R.

Theorem 8 Given B 1WMR safe bits, the algorithm described in Figure 5.4 implements a 1WMR 2B-valued
safe register.

Proof A read of R that does not overlap a write of R returns the binary representation of the last value that
has been written into R and is consequently safe to return. A read of R that overlaps a write of R can obtain
any of b possible values whose binary encoding uses B bits. As every possible combination of the B base bit
registers represents one of the the b values that R can potentially contain (this is because b = 2B), it follows
that a read concurrent with a write operation returns a value that belongs to the range of R. Consequently,
R is a b-valued safe register, for b = 2B . ✷Theorem 8

It is interesting to notice that this algorithm does not implement a regular register R even when the base
bits are regular. For instance, a read changing the value of R from 0 . . . 0 to 1 . . . 1 (in binary representation)
can return any value, i.e., even one that was never written, if it overlaps a write operation. The reader (the
human, not the process) can check that imposing a specific order according to which the array REG[1 : B]
is accessed does not overcome this issue.

5.2.2 From regular bits to regular b-valued registers

Overview. We build a 1WMR regular b-valued register R (storing values 1, . . . , b) from regular bits us-
ing “unary encoding”. Considering an array REG[1 : b] of 1WMR regular bits, the value v ∈ [1..b] is
represented by 0s in bits 1 to v − 1 and 1 in bit v.

The algorithm is described in Figure 5.5. The key idea is to write into the array REG[1 : b] in one
direction, and to read it in the opposite direction. To write v, the writer first sets REG[v] to 1, and then
“cleans” the array REG, which consists in setting the bits REG[v − 1] to REG[1] to 0. To read, a reader
traverses the array REG[1 : b] starting from its first entry (REG[1]) and stops as soon as it discovers an
index j such that REG[j] = 1. The reader then returns j as the result of the read operation. Notice that a
read proceeds through the “cleaned” part of the array in the ascending order, while a write updates the array
in the opposite direction, from v − 1 until 1.

It is also important to notice that, even when no write operation is in progress, it may happen that several
entries of the array are set to 1. Intuitively, only the smallest entry of REG set to 1 encodes the most recently
written value. The other entries can be seen as a partial evidence on past values.

57

operation R.write(v):
REG[v]← 1;
for j from v − 1 step −1 until 1 do REG[j]← 0 end do;
return ()

operation R.read() issued by pi:
j ← 1;
while (REG[j] = 0) do j ← j + 1 end do;
return (j)

Figure 5.5: Regular register: from bits to b-valued register

The algorithm assumes that the register R has an initial value v0: initially, REG[j] = 0 for 1 ≤ j < v0,
REG[v0] = 1, and REG[j] = 0 or 1 for v0 < j ≤ b.

Two observations are in order:

1. The “last” base register REG[b], once set to 1 will never change. Therefore, a reader once it witnessed
0 in all entries of REG up to b− 1, might by default consider REG[b] to be 1.

2. The reader’s algorithm does not write to base registers. As a result, the algorithm may handle an
arbitrary number of readers, assuming that the base registers can maintain sufficiently many readers.

Space complexity. The memory cost of the transformation algorithm is b base bits, i.e., it is linear with
respect to the size of the value range of the constructed register R. This is a consequence of the unary
encoding of these values1.

Lemma 2 The algorithm of Figure 5.5 is wait-free. The value v returned by a read belongs to the set
{1, . . . , b}.

Proof A R.write(v) operation trivially terminates in a finite number of its own steps: the for loop only
goes through v iteration.

To see that a R.read() operation terminates in at most v iterations of the while loop, observe that
whenever the writer changes sets REG[x] from 1 to 0, it has previously set to 1 another entry REG[y] such
hat x < y ≤ b. Therefore, if a reader reads REG[x] and returns the new value 0, then a higher entry of the
array is set to 1.

As the running index of the while loop starts at 1 and is incremented each time the loop body is executed,
it follows that the loop always terminates, and the value j it returns is such that 1 ≤ j ≤ b. ✷Lemma 2

The previous lemma relies heavily on the fact that the high-level register R can contain up to b distinct
values. If the range of R is unbounded, a R.read() operation might never terminate if the writer continu-
ously updates R with ever-increasing values. More precisely, suppose that the range of R is unbounded and
consider the following scenario. Let R.write(x) be the last write operation terminated before a R.read()
starts. Let the read operation proceed until it is about to read REG[x] and then schedule a concurrent
R.write(y), y > x) to set REG[x] from 1 to 0. Then we schedule the read of REG[x] by the reader. As the
register is unbounded, this scenario can repeat indefinitely, forcing the reader to take infinitely many reads
of REG.

1Let B be the number of bits required to obtain a binary representation of a value ofR. It is important to see that, as B = log2(b),
the cost of the construction is exponential with respect to this number of bits.

58

Theorem 9 Given b 1WMR regular bits, the algorithm described in Figure 5.5 implements a 1WMR b-
valued regular register.

Proof Consider first a read operation that is not concurrent with any write, and let v be the last written
value. By the write algorithm, when the corresponding R.write(v) terminates, the first entry of the array
that equals 1 is REG[v] (i.e., REG[x] = 0 for 1 ≤ x ≤ v − 1). Because a read traverses the array starting
from REG[1], then REG[2], etc., it necessarily reads until REG[v] and returns the value v.

R.write(v0) R.write(v1) R.write(v2) R.write(vm)

R.read()

Figure 5.6: A read with concurrent writes

Let us now consider a read operation R.read() that is concurrent with one or more write operations
R.write(v1), . . ., R.write(vm) (as depicted in Figure 5.6). Let v0 be the value written by the last write
operation that terminated before the operation R.read() starts. For simplicity we assume that each execu-
tion begins with a write operation that sets the value of R to an initial value. As a read operation always
terminates (Lemma 2), the number of writes concurrent with the R.read() operation is finite.

By the algorithm, the read operation finds 0 in REG[1] up to REG[v − 1], 1 in REG[v], and then
returns v. We are going to show by induction that each of these base-object reads returns a value previously
or concurrently written by a write operation in R.write(v0), R.write(v1), . . ., R.write(vm).

Since R.write(v0) sets REG[v0] to 1 and REG[v0−1] down to REG[1] to 0, the first base-object read
performed by the R.read() operation returns the value written by R.write(v0) or a concurrent write. Now
suppose that the read on REG[j], for some j = 1, . . . , v − 1, returned 0 written by the latest preceding
or a concurrent write operation R.write(vk) (k = 1, . . . ,m). Notice that vk > j: otherwise, R.write(vk)
would not touch REG[j]. By the algorithm, R.write(vk) has previously set REG[vk] to 1 and REG[vk−1]
down to REG[j + 1] to 0. Thus, since the base registers are regular, the subsequent read of REG[j + 1]
performed within the R.read() operation can only return the value written by R.write(vk) or a subsequent
write operation that is concurrent with R.read().

By induction, we derive that the read of REG[v] performed within R.read() returns a value written by
the latest preceding or a concurrent write. ✷Theorem 9

5.2.3 From atomic bits to atomic b-valued registers

In Chapter 6, we give a direct construction of an atomic bit from three regular ones. However, if we use this
construction to replace regular bits with atomic ones in the algorithm in Figure 5.5 we do not get an atomic
b-valued register. Interestingly, a relatively simple modification of its read algorithm makes that possible
by preventing the new/old inversion phenomenon.

The idea is to equip the R.read() algorithm in Figure 5.5 with a “counter-inversion” mechanism. Instead
of returning position j where the first 1 was located in REG, the read operation traverses the array staring in
the opposite direction (from j to 1) and returns the smallest entry containing value 1. The resulting algorithm
is presented in Figure 5.7.

59

operation R.write(v):
REG[v]← 1;
for j from v − 1 step −1 until 1 do REG[j]← 0 end do;
return ()

operation R.read() issued by pi:
j up← 1;

(1) while (REG[j up] = 0) do j up← j up+ 1 end do;
(2) j ← j up;
(3) for j down from j up− 1 step −1 until 1 do
(4) if (REG[j down] = 1) then j ← j down end if

end do;
return (j)

Figure 5.7: Atomic register: from bits to b-valued register

Theorem 10 The algorithm in Figure 5.7 implements a 1WMR atomic b-valued register b 1WMR atomic
bits.

Proof For every history of the algorithm, we define the reading function ρ as follows. If a read operation r
returns v, then ρ(r) is the latest write operation that updated REG[v] before the read of RE[v] preformed
by r (the initializing write w0 if r returns the initial value). Since r returns the index of REG containing 1,
ρ(r) writes 1 to REG[v]. Since the elements of REG are atomic registers, ρ is well-defined.

By definition, ρ satisfies A0 (Section 4.2.4). To see that A1 is also satisifed, suppose that ρ(r) →
w(v′) → (v) for some write w(v′). By the algorithm, w(v′) sets REG[v] to 1 and then all elements of
REG from v − 1 down to 1 to 0. Thus, v′ < v, otherwise w(v′) would also write to REG[v] and ρ(r)
would not be the latest write updating REG[v] before r reads REG[v]. Since r reached REG[v], there
exists a write w(v′′) that set REG[v′] to 0 after w(v′) set it to 1 but before r read it. By the algorithm,
before that this write has set a REG[v′′] to 1 and, by the assumption, v′′ < v. Assuming that w(v′′) is the
latest such write, before reacing REG[v], r must have found REG[v′′] = 1—a contradiction.

To show that ρ satisfies A3, let us consider two read operations r1 and r2, r1 → r2, and suppose, by
contradiction, that ρ(r2)→ ρ(r1). By A0 and A1, both r1 and r2 are concurrent with ρ(r1). Let r1 return
v and r2 return v′ and By the definition of ρ, ρ(r1) does not touch REG[v′], i.e., either (1) v′ > v, or (2)
v′ < v and ρ(r2) set REG[v′] to 1 but did not set REG[v] to 1 before r1 read 0 in it.

In case (1), r2 must have found 0 in REG[v] before finding 1 in REG[v′] and returning v′ > v. As
before, only a write w(v′′) such that v < v′′ < v′ could have set REG[v] to 0 after ρ(v) set it to 1 and
before r2 read it. But then, since w(v′′) has previously set REG[v′′] to 1, r2 must have returned a value
smaller than v′—a contradiction.

In case (2), r1 finds 1 in REG[v], v > v′, and then finds 0 in all REG[v−1] down to REG[1], including
REG[v′]. Since ρ(r2) has previously set REG[v′] to 1, another write operation must have set REG[v′] to
0 after ρ(r2) set it to 1 but before r1 read it. Thus, when r2 subsequently reads 1 in REG[v′], ρ(r2) is not
the last preceding write operation to write to REG[v′]—a contradiction with the definition of ρ.

Hence, ρ is an atomic reading function and, by Theorem 5, the algorithm indeed implements a 1WMR
atomic register. ✷Theorem 10

60

5.3 Bibliographic notes

The notions of safe, regular and atomic registers have been introduced by Lamport [64].
Theorem 5, and the algorithms described in Figure 5.1, Figure 5.3, Figure 5.4 and Figure 5.5 are due to

Lamport [64]. The algorithm described in Figure 5.7 is due to Vidyasankar [86]. The algorithms described
in Figure 7.2 and 7.3 are due to Vityani and Awerbuch [90].

The wait-free construction of stronger registers from weaker registers has always been an active research
area. The interested reader can consult the following (non-exhaustive!) list where numerous algorithms are
presented and analyzed [11, 16, 21, 22, 42, 55, 65, 83, 87, 88, 89].

5.4 Exercises

1. Multi-valued regular register

Consider the implementation of an M -valued one-writer N -reader (1WNR) regular register (Fig-
ure 24).

(a) In the code of write(v), is it possible to change the order of operations: first write 0 to R[v −
1], . . . , R[1] and then write 1 to R[v]?

(b) What if the writer writes 0 to R[1], . . . , R[v − 1] in the ascending order? Justify your answers
(e.g., by presenting an execution that violates the properties of a regular register).

(c) If we replace the regular binary registers with atomic ones, would we get an implementation of
an atomic multi-valued register?

(d) If we replace the regular binary registers with atomic ones, would we get an implementation of
an atomic multi-valued register?

61

62

Chapter 6

Implementing an atomic bit: an optimal
construction

6.1 Introduction

In the previous chapter, we introduced the notions of safe, regular and atomic (linearizable) read/write
objects (also called registers). In the case of 1W1R (one writer one reader) register, assuming that there
is no concurrency between the reader and the writer, the notions of safety, regularity and atomicity are
equivalent. This is no longer true in the presence of concurrency. Several bounded constructions have been
described for concurrent executions. Each construction implements a stronger register from a collection of
weaker base registers. We have seen the following constructions:

• From a safe bit to a regular bit. This construction improves on the quality of the base object with
respect to concurrency. Contrarily to the base safe bit, a read operation on the constructed regular bit
never returns an arbitrary value in presence of concurrent write operations.

• From a bounded number of safe (resp., regular or atomic) bits to a safe (resp., regular or atomic)
b-valued register. These constructions improve on the quality of each base object as measured by
the number of values it can store. They show that “small” base objects can be composed to provide
”bigger” objects that have the same behavior in the presence of concurrency.

To get a global picture, we miss one bounded construction that improves on the quality in the presence
of concurrency, namely, a construction of an atomic bit from regular bits. This construction is fundamental,
as an atomic bit is the simplest nontrivial object that can be defined in terms of sequential executions. Even
if an execution on an atomic bit contains concurrent accesses, the execution still appears as its sequential
linearization.

In this chapter, we first show that to construct a 1W1R atomic bit, we need at least three regular bits,
two written by the writer and one written by the reader. Then we present an optimal three-bit construction
of an atomic bit.

6.2 A Lower Bound Theorem

In Section 7.0.1 of Chapter 4, we presented the construction of a 1W1R atomic register from an unbounded
regular register. The base regular register had to be unbounded because the construction was using sequence

63

numbers, and the value of the base register was a pair made up of the data value of the register and the
corresponding sequence number. The use of sequence numbers makes sure that new/old inversions of read
operations never happen.

A fundamental question is the following: Can we build a 1W1R atomic register from a finite number of
regular registers that can store only finitely many values, and can be written only by the writer (of the atomic
register)?

This section first shows that such a construction is impossible, i.e., the reader must also be able to write.
In other words, such a construction must involve two-way communication between the reader and the writer.
Moreover, even if we only want to implement one atomic bit, the writer must be able to write in two regular
base bits.

6.2.1 Digests and Sequences of Writes

Let A be any finite sequence of values in a given set. A digest of A is a shorter sequence B that “mimics” A:
A and B have the same first and last elements; an element appears at most once in B; and two consecutive
elements of B are also consecutive in A. B is called a digest of A.

As an example let A = v1, v2, v1, v3, v4, v2, v4, v5. The sequence B = v1, v3, v4, v5 is a digest of A.
(there can be multiple digests of a sequence).

Every finite sequence has a digest:

Lemma 3 Let A = a1, a2, . . . , an be a finite sequence of values. For any such sequence there exists a
sequence B = b1, . . . , bm of values such that:

• b1 = a1 ∧ bm = an,

• (bi = bj)⇒ (i = j),

• ∀j : 1 ≤ j < m : ∃i : 1 ≤ i < n : bj = ai ∧ bj+1 = ai+1.

Proof The proof is a trivial induction on n. If n = 1, we have B = a1. If n > 1, let B = b1, . . . , bm be a
digest of A = a1, a2, . . . , an. A digest of a1, a2, . . . , an, an+1 can be constructed as follows:
- If ∀j ∈ {1, . . . ,m} : bj ̸= an+1, then B = b1, . . . , bm, an+1 is a digest of a1, a2, . . . , an.
- If ∃j ∈ {1, . . . ,m} : bj = an+1, there is a single j such that bj = an+1 (this is because any value appears
at most once in B = b1, . . . , bm). It is easy to check that B = b1, . . . , bj is a digest of a1, . . . , an, an+1.

✷Lemma 3

Consider now an implementation of a bounded atomic 1W1R register R from a collection of base
bounded 1W1R regular registers. Clearly, any execution of a write operation w that changes the value
of the implemented register must consist of a sequence of writes on base registers. Such a sequence of
writes triggers a sequence of state changes of the base registers, from the state before w to the state after w.

Assuming that R is initialized to 0, let us consider an execution E where the writer indefinitely alternates
R.write(1) and R.write(0). Let wi, i ≥ 1, denotes the i-th R.write(v) operation. This means that v = 1
when i is odd and v = 0 when i is even. Each prefix of E, denoted by E′, unambiguously determines the
resulting state of each base object X, i.e., the value that the reader would obtain if it read X right after E′,
assuming no concurrent writes. Indeed, since the resulting execution is sequential, there exists exactly one
reading function and we can reason about the state of each object at any point in the execution.

Each write operation w2i+1 = R.write(1), i = 0, 1, . . ., contains a sequence of writes on the base
registers. Let ω1, . . . ,ωx be the sequence of base writes generated by w2i+1. Let Ai be the corresponding

64

sequence of base-registers states defined as follows: its first element a0 is the state of the base registers
before ω1, its second element a2 is the state of the base registers just after ω1 and before ω2, etc.; its last
element ax is the state of the base registers after ωx.

Let Bi be a digest derived from Ai (by Lemma 3 such a digest sequence exists).

Lemma 4 There exists a digest B = b0, . . . , by (y ≥ 1) that appears infinitely often in B1, B2,

Proof First we observe that every digest Bi (i = 1, 2, . . .) must consists of at least two elements. Indeed if
Bi is a singleton b0, then the read operation on R applied just before wi and the read operation on R applied
just after wi observe the same state of base registers b0. Therefore, the reader cannot decide when exactly
the read operation was applied and must return the same value—a contradiction with the assumption that wi

changes the value of R.
Since the base registers are bounded, there are finitely many different states of the base registers that

can be written by the writer. Since a digest is a sequence of states of the registers written by the writer in
which every state appears at most once, we conclude that there can only be finitely many digests. Thus, in
the infinite sequence of digests, B1, B2, . . ., some digest B (of two or more elements) must appear infinitely
often. ✷Lemma 4

Note that there is no constraint on the number of internal states of the writer. Since there may be no
bound on the number of steps taken within a write operation, all the sequences Ai can be different, and
the writer may never perform the same sequence of base-register operations twice. But the evolution of the
base-register states in the course of Ai can be reduced to its digest Bi.

6.2.2 The Impossibility Result and the Lower Bound

Theorem 11 It is not possible to build a 1W1R atomic bit from a finite number of regular registers that can
take a finite number of values and are written only by the writer.

Proof By contradiction, assume that it is possible to build a 1W1R atomic bit R from a finite set S of
regular registers, each with a finite value domain, in which the reader does not update base registers.

An operation r = R.read() performed by the reader is implemented as a sequence of read operations on
base registers. Without loss of generality, assume that r reads all base registers. Consider again the execution
E in which the writer performs write operations w1, w2, . . ., alternating R.write(1) and R.write(0).

Since the reader does not update base registers, we can insert the complete execution of r between every
two steps in E without affecting the steps of the writer. Since the base registers are regular, the value read
in a base register X by the reader performing r after a prefix of E is unambiguously defined by the latest
value written to X before the beginning of r. Let λ(r) denote the state of all base registers observed by r.

By Lemma 4, there exists a digest B = b0, . . . , by (y ≥ 1) that appears infinitely often in B1, B2, . . .,
where Bi is a digest of w2i+1. Since each state in {b0, . . . , by} appears in E infinitely often, we can construct
an execution E′ by inserting in E a sequence of read operations r0, . . . , ry such that for each j = 0, . . . , y,
λ(rj) = by−j . In other words, in E′, the reader observes the states of base registers evolving downwards
from by to b0.

By induction, we show that in E′, each rj (j = 0, . . . , y) must return 1. Initially, since λ(r0) = by and
by is the state of the base registers right after some R.write(1) is complete, r0 must return 1. Inductively,
suppose that rj (for some j, 0 ≤ j ≤ y − 1) returns 1 in E′.

Consider read operations rj and rj+1 (j = 0, . . . , y − 1). Recall that λ(rj) = by−j and λ(rj+1) =
by−j−1. Since digest B appears in B1, B2, . . . infinitely often, E′ contains infinitely many base-register

65

R.write(1) operation

λ(rj) = by−j λ(rj+1) = by−j−1

from by−j−1 to by−j

rj rj+1

Figure 6.1: Two read operations rj and rj + 1 concurrent with R.write(1)

writes by which the writer changes the state of base registers from by−j−1 to by−j . Let X be the base
register changed by these writes.

Since X is regular, we can construct an execution E′′ which is indistinguishable to the reader from E′,
where rj are concurrent with a base-register write performed within R.write(1) in which the writer changes
the state of the base registers from by−j−1 to by − j (Figure 6.1).

By the induction hypothesis, rj returns 1 in E′ and, thus, in E′′. Since the implemented register R is
atomic and rj returns the concurrently written value 1 in E′′, rj+1 must also return 1 in E′′. But the reader
cannot distinguish E′ and E′′ and, thus, rj+1 returns 1 also in E′.

Inductively, ry must return 1 in E′. But λ(ry) = b0, where b0 is the state of base registers right after
some R.write(0) is complete. Thus, ry must return 0—a contradiction. ✷Theorem 11

Therefore, to implement a 1W1R atomic register from bounded regular registers, we must establish two-
way communication between the writer and the reader. Intuitively, the reader must inform the writer that it
is aware of the latest written value, which requires at least one base bit that can be written by the reader and
read by the writer. But the writer must be able to react to the information read from this bit. In other words:

Theorem 12 In any implementation a 1W1R atomic bit from regular bits, the writer must be able to write
to at least 2 regular bits.

Proof Suppose, by contradiction, that there exists an implementation of a 1W1R atomic bit R in which the
writer can write to exactly one base bit X.

Note that every write operation on R that changes the value of X and does not overlap with any read
operation must change the state of X. Without loss of generality assume that the first write operation
w1 = R.write(1) performed by the writer in the absence of the reader changes the value of X from 0 to 1
(the corresponding digest is 0, 1).

Consider an extension of this execution in which the reader performs r1 = R.read() right after the end
of w1. Clearly, r1 must return 1. Now add w2 = R.write(0) right after the end of r1. Since the state of X
at the beginning of w2 is 1, the only digest generated by w2 is 1, 0.

Now add r2 = R.read() right after the end of w2, and let E be the resulting execution. Now r2 must
return 0 in E. But since X is regular, E is indistinguishable to the reader from an execution in which r1 and
r2 take place within the interval of w1 and thus both must return 1—a contradiction. ✷Theorem 12

As we have seen in the previous chapter, there is a trivial bounded algorithm that constructs a regular bit
from a safe bit. This algorithm only requires one additional local variable at the writer. The combination of
this algorithm with Theorem 12 implies:

66

Corollary 1 The construction of a 1W1R atomic bit from safe bits requires at least 3 1W1R safe bits, two
written by the writer and one written by the reader.

As the construction presented in the next section uses exactly 3 1W1R regular bits to build an atomic
bit, it is optimal in the number of base safe bits.

6.3 From three safe bits to an atomic bit

Now we present an optimal construction of a high level 1W1R atomic bit R from three base 1W1R safe bits.
The high level bit R is assumed to be initialized to 0. It is also assumed that each R.write(v) operation
invoked by the writer changes the value of R. This is done without loss of generality, as the writer of R
can locally keep a copy v′ of the last written value, and apply the next R.write(v) operation only when it
modifies the current value of R.

The construction of R is presented in an incremental way.

6.3.1 Base architecture of the construction

The three base registers are initialized to 0. Then, as we will see, the read and write algorithms defining the
construction, are such that, any write applied to a base register X changes its value. So, its successive values
are 0, then 1, then 0, etc. Consequently, to simplify the presentation, a write operation on a base register X,
is denoted “change X”. As any two consecutive write operations on a base bit X write different values, it
follows that X behaves as regular register.

The 3 base safe bits used in the construction of the high level atomic register R are the following:

• REG: the safe bit that, intuitively, contains the value of the atomic bit that is constructed. It is written
by the writer and read by the reader.

• WR: the safe bit written by the writer to pass control information to the reader.

• RR: the safe bit written by the reader to pass control information to the writer.

6.3.2 Handshaking mechanism and the write operation

As we saw in the previous section, the reader should inform the writer when it read a new value v in
the implemented register. Otherwise, the uninformed writer may subsequently repeat the same digest of
state transitions executing R.write(v) so that the reader would be subject to new/old inversion. Therefore,
whenever the writer is informed that a previously written value is read by the reader, it should change the
execution so that critical digests are not repeated.

The basic idea of the construction is to use the control bits WR and RR to implement the handshaking
mechanism. Intuitively, the writer informs the reader about a new value by changing the value of WR so
that WR ̸= RR. Respectively, the reader informs the writer that the new value is read by changing the value
of RR so that WR = RR. With these conventions, we obtain the following handshaking protocol between
the writer and the reader:

• After the writer has changed the value of the base register REG, if it observes WR = RR, it changes
the value of WR.

As we can see, setting the predicate WR = RR equal to false is the way used by the writer to signal
that a new value has been written in REG. The resulting is described in Figure 6.2.

67

operation R.write(v): %Change the value of R %
i change REG ;
ii if WR = RR then change WR end if; % Strive to establish WR ̸= RR %

return ()

Figure 6.2: The R.write(v) operation

• Before reading REG , the reader changes the value of RR, if it observes that WR ̸= RR. This
signaling is used by the writer to update WR when it discovers that the previous value has been read.

As we are going to see in the rest of this chapter, the exchange of signals through WR and RR is also used
by the reader to check if the value it has found in REG can be returned.

6.3.3 An incremental construction of the read operation

The reader’s algorithm is much more involved than the writer’s algorithm. To make it easier to understand,
this section presents the reader’s code in an incremental way, from simpler versions to more involved ones.
In each stage of the construction, we exhibit scenarios in which a simpler version fails, which motivates a
change of the protocol.

The construction: step 1 We start with the simplest construction in which the reader establishes RR =
WR and returns the value found in REG .

3 if WR ̸= RR then change RR end if; % Strive to establish WR = RR %
4 val ← REG;
5 return (val)

We can immediately see that this version does not really use the control information: the value returned
by the read operation does not depend on the states of RR and WR. Consequently, this version is subject
to new/old inversions: suppose that while the writer changes the value of REG from 0 to 1 (line ii in
Figure 6.2), the reader performs two read operations. The first read returns 1 (the “new” value of R) and the
second read returns 0 (the “old” value), i.e., we obtain a new/old inversion.

The construction: step 2 An obvious way to prevent the new/old inversion described in the previous step
is to allow the reader to return the current value of REG only if it observes that the writer has updated WR
to make WR ̸= RR since the previous read operation.

1 if WR = RR then return (val) end if;
3′ change RR; % Strive to establish WR = RR %
4 val ← REG;
5 return (val)

Here we assume that the local variable val initially contains the initial value of R (e.g., 0). Checking
whether WR ̸= RR before changing RR in line 3′ looks unnecessary, since the reader does not touch the
shared memory between reading WR in line 1 and in line 3, so we dropped it for the moment.

68

Unfortunately, we still have a problem with this construction. When a read is executed concurrently
with a write, it may happen that the read returns a concurrently written value but a subsequent read finds
RR ̸= WR and returns an old value found in REG .

Indeed, consider the following scenario (Figure 6.3):

1. w1 = R.write(1) changes REG and starts changing WR.

2. r1 reads WR, finds WR ̸= RR and changes RR, reads REG and returns 1.

3. r2 reads WR and still finds WR ̸= RR (new-old inversion on WR).

4. w1 completes changing WR and returns.

5. w2 = R.write(0) starts changing REG .

6. r2 changes RR (establishing that RR ̸= WR now), reads REG and returns 0.

7. r3 reads WR, finds WR ̸= RR, reads REG and returns 1 (new-old inversion on REG).

8. w1 completes changing REG and returns.

In other words, we obtain a new-old inversion for read operations r2 and r3.

return 0

w1=write(1)

RR ̸=WR

change WR

change RR

read 1

RR=WR

change REG

RR ̸=WR

w2=write(0)

RR ̸=WR

Writer

Reader

r1
change REG

return 1 r2

change RR

read 0 read 1

r3 return 1

Figure 6.3: Counter example to step 2 of the construction: new-old inversion for r1 and r2

The construction: step 3 The problem with the scenario above is that read operation r2 changes RR
while it is not necessary: it previously evaluated WR ̸= RR due to a new-old inversion on WR. Thus,
when r2 changes RR, it sets WR ̸= RR again. Thus, the subsequent read r3 finds WR ̸= RR will be
forced to return a value read in REG , and the value can be “old” due to the ongoing change in REG .

A naı̈ve solution to this could be for the reader to check again if WR ̸= RR still holds before changing
RR. By itself, this additional check will not change anything, since we could schedule this check performed
by r2 immediately after the first one and concurrently with w1’s change of WR. Thus, additionally, the
reader may first read REG and only then check if the condition WR ̸= RR still holds and change RR if it
does.

1 if WR = RR then return (val) end if;
2′ val ← REG;
3 if WR = RR then change RR; end if;
5 return (val)

69

This way we fix the problem described in Figure 6.3 but face a new one. The value read in REG may get
overly conservative in some cases. Consider, for example, the scenario in Figure 6.4. Here read operation
r2 evaluates WR = RR and returns the old value 1, even though the most recently written value is actually
0. This is because, the preceding read operation r1 changed RR to be equal to WR without noticing that
REG was meanwhile changed

return 1

w1=write(1)

Writer

Reader
change RR

w2=write(0)

RR ̸=WR

read 1

RR ̸=WR

r1 return 1 r2

Figure 6.4: Counter example to step 3 of the construction: r2 returns an outdated value

The construction: step 4 One solution to the problem exemplified in Figure 6.4 is, as put in the pseu-
docode below, to evaluate REG after changing RR and then check RR again. If the predicate RR = WR
does not hold after RR was changed and REG was read again, the reader returns the old (read in line 2)
value of REG . Otherwise, the new (read in line 4) value is returned.

1 if WR = RR then return (val) end if;
2 aux← REG; % Conservative value %
3 if WR = RR then change RR; end if;
4 val ← REG;
5 if WR = RR then return (val) end if
7 return (aux)

Unfortunately, there is still a problem here. The variable val evaluated in line 4 may be too conservative
to be returned by a subsequent read operation that finds RR = WR in line 1.

Again, suppose that w1 = R.write(1) is followed a concurrent execution of r1 = R.read() and w2 =
R.write(0) as follows (Figure 6.5):

1. w1 = R.write(1) completes.

2. w2 = R.write(0) begins and starts changing REG from 1 to 0.

3. r1 finds WR ̸= RR, reads 0 from REG and stores it in aux (line 2), changes RR, reads 1 from REG
and stores it in val (the write operation on REG performed by w2 is still going on).

4. w2 completes its write on REG , finds RR = WR and starts changing WR.

5. r1 finds WR ̸= RR (line 5), concludes that there is a concurrent write operation and returns the
“conservative” value 0 (read in line 2).

6. r2 = R.read() begins, finds RR = WR (the write operation on WR performed by w2 is still going
on), and returns 1 previously evaluated in line 4 of r1.

That is, r1 returned the new (concurrently written) value 0 while r2 returned the old value 1.

70

RR ̸=WR RR=WR

Reader

Writer

r1

w1=write(1) w2=write(0)

change REG

change RR

read 1
to val

read 0
to aux

RR ̸=WR

RR=WR change WR

r2 return 1return 0

Figure 6.5: Counter example to step 4 of the construction: new-old inversion for r1 and r2

The construction: last step The complete read algorithm is presented in Figure 6.6. As we saw in this
chapter, safe base registers allow for a multitude of possible execution scenarios, so an intuitively correct
implementation could be flawed because of an overlooked case. To be convinced that our construction is
indeed correct, we provide a rigorous proof below.

operation R.read():
1 if WR = RR then return (val) end if;
2 aux← REG;
3 if WR ̸= RR then change RR end if;
4 val← REG;
5 if WR = RR then return (val) end if;
6 val← REG;
7 return (aux)

Figure 6.6: The R.read() operation

6.3.4 Proof of the construction

Theorem 13 Let H be an execution history of the 1W1R register R constructed by the algorithm in Fig-
ures 6.2 and 6.6. Then H is linearizable.

Proof Let H be an execution history. By Theorem 5, to show that H is linearizable (atomic), it is sufficient
to show that there exists a reading function π satisfying the assertions A0, A1 and A2.

In order to distinguish the operations R.read() and R.write(v), denoted by r and w, from the read and
write operations on the base registers (e.g., “change RR”, “aux ← REG”, etc.), the latter ones are called
actions. The corresponding execution containing, additionally, the action invocation and response events is
denoted L. Let→L denote the corresponding partial relation on the actions.

Moreover, r being a read operation and loc the local variable (aux or val) whose value is returned by r
(in line 1, 5 or 7), ρr denotes the last read action “loc← REG” executed before r returns:

• If r returns in line 7, ρr is the read action “aux← REG” executed in line 2 of r,

• If r returns in line 5, ρr is is the read action “val ← REG” executed in line 4 of r, and finally

• If r returns in line 1, ρr is is the read action “val ← REG” executed in line 4 or 6 of some previous
read operation.

71

Let φ be any regular reading function on REG . Thus, for each read action ρr we can define the cor-
responding write action φ(ρr) that writes the value returned by r. The write operation that contains φ(ρr)
determines π(r). If there is no such write operation, i.e., ρr returns the initial value of REG , we assume
that π(r) is the (imaginary) initial write operation that writes the initial value and precedes all actions in H .

Proof of A0. Let r be a complete read operation in H . By the definition of π, the invocation of the write
action φ(ρr) occurs before the response of ρr and, thus, the response of r in L, i.e., inv[π(ρr)] <L resp[r].
Thus, inv[π(r)] <L inv[π(ρr)] <L resp[r] and ¬(resp[r] <L inv[π(r)]).

By contradiction, suppose that A0 is violated, i.e., r →H π(r). Thus, resp[r] <L inv[π(ρr)])—a
contradiction.

Proof of A1. Since there is only one writer, all writes are totally ordered and w →H π(r) is equivalent to
¬(π(r)→H w).

By contradiction, suppose that there is a write operation w such that π(r) →H w →H r. If there are
several such write operations, let w be the last one before r, i.e., " w′: w →H w′ →H r.
We first claim that, in such a context, ρr cannot be a read action of the read operation r (i.e., ρr /∈ r).
Proof of the claim. Recall that φ(ρr) ∈ π(r) (by definition). Let ω be the “change REG” action of the
operation w (ω ∈ w). By the case assumption, we obtain φ(ρr)→L ω. By the definition of φ(ρr), we have
¬(φ(ρr) →L ρr) and, thus, ¬(ω →L ρr). Therefore, inv[ρr] <L resp[ω]. As ω ∈ w and w →H r, we
have inv[ρr] <L resp[w] <L inv[r]. As ρr started before r, and both are executed by the same process, we
have ρr /∈ r. End of the proof of the claim.

Since ρr /∈ r, by the algorithm in Figure 6.6, the read operation r returns a value in line 1, which means
that it has previously seen WR = RR. On the other hand, after the writer has executed ω within π(r), it read
RR in order to set WR different from RR if they were seen equal. As w→H r and " w′: w →H w′ →H r
(assumption), it follows that RR has been modified by a read operation in line 3 before the read operation r
starts but after or concurrently with the read action on RR performed by w. Let r′ be that read operation;
as there is a single process executing R.read(), we have r′ →H r.
Now we claim that ρr /∈ r′.
Proof of the claim: Let r′′ be the read operation that contains ρr. We show that r′′ ̸= r′. We observe that
(Figure 6.7):

- If r′′ updates RR, it does it in line 3, i.e., before executing ρr (in line 4 or 6),

- inv[ρr] <L resp[ω] (since φ is a regular reading function and φ(rhor) precedes ω);

it is indicated by a dotted arrow in Figure 6.7),

- w reads RR after having executed ω (code of the write operation).

It follows from these observations that if r′′ writes into RR, then it completes the write before w starts
reading RR. But r′ writes to RR r′ after or concurrently with w reading RR. Therefore, r′′ ̸= r′ and, thus,
ρr /∈ r′. End of the proof of the claim.

But since the reader modifies RR within r′, it also executes line 4 of r′ (val ← REG) before executing
r (this follows from the code of the read operation). But, as ρr /∈ r′, this read of REG action within r′

contradicts the definition of ρr (according to which ρr is the last action “val ← REG” executed before r
starts), which completes the proof of the assertion A1.

72

ω

π(r)

write RR

r′

read RR

w

ρr

r
r′′

Figure 6.7: ρr belongs neither to r nor to r′

Proof of A2. By contradiction, suppose that there exist r1 and r2, two complete read operations in H ,
such that r1 →H r2 and π(r2) →H π(r1). Without loss of generality, we assume that if r1 returns at line
1, then ρr1 is the read action in line 6 in the immediately preceding read operation. Since π(r2) ̸= π(r1),
we have ρr1 ̸= ρr2. Thus, either ρr1 →L ρr2 or ρr2 →L ρr1.

• ρr2 →L ρr1.
As ρr1 precedes or belongs to r1, and r1 →H r2, we have resp[ρr1] <L inv[r2]. Combined with
the case assumption, the assertion implies ρr2 →L ρr1 →L r2, which contradicts the fact that ρr2
is the last “loc ← REG” action executed before r2 started, where loc is val or aux. So, the case
ρr2 →L ρr1 is not possible.

• ρr1 →L ρr2.
By definition φ(ρr1) ∈ π(r1) and φ(ρr2) ∈ π(r2). As π(r2)→H π(r1), we have φ(ρr2)→L φ(ρr1).

φ(ρr2) φ(ρr1)

ρr2ρr1

resp[ρr1] inv[ρr2] resp[φ(ρr1)]

WR is not modified

inv[φ(ρr1)]

Figure 6.8: A new/old inversion on the regular register REG

Thus, we have φ(ρr2) →L φ(ρr1) and ρr1 →L ρr2 (Figure 6.8) which implies a new/old inversion
on the base regular register REG . But since φ is a regular reading function on REG , we have
¬(ρr1 →L φ(rhor1) and ¬(φ(ρr1) →L ρr2). Thus, both ρr1 and ρr2 have to overlap π(ρr1) (Figure
6.8): inv[φ(ρr1)] <L resp[ρ1] and inv[ρ2] <L resp[φ(ρr1)]. As φ(ρr1) is a base action that updates
REG , and as REG and WR are both updated by the writer, the “value” of the base register WR does
not change while the writer is updating REG or, more formally:

Property P: all read actions on WR performed between resp[ρr1] and inv[ρr2] return the same
value.

73

We consider three cases according to the line at which r1 returns.

– r1 returns in line 7.
Then ρr1 is “aux← REG” in line 2 of r1. We have the following:
- Since ρr1 →L ρr2 and r1 returns in line 7, ρr2 can only be the read in line 6 of r1 or a later
read action.
- After having performed ρr1, r1 reads WR and if WR ̸= RR, it sets RR = WR in line 3. But
r1 returns in line 7, after having seen RR different from WR in line 5 (otherwise, it would have
returned in line 5). Thus, r1 reads different values of WR after ρr1 (line 2 of r1) and before ρr2
(line 6 of r1 or later). This contradicts property P above.

– r1 returns in line 5.
Then, ρr1 is “val ← REG” in line 4 of r1, and r1 sees RR = WR in line 5. Since ρr1 →L ρr2,
r2 does not return in line 1. Indeed, if r2 returns in line 1, the property P implies that the last
read on REG preceding line 1 of r2 is line 4 of r1, i.e., ρr1 = ρr2. Thus, r2 sees RR ̸= WR in
line 1, before performing ρr2 is in line 2 or line 4 of r2. But r1 has seen WR = RR in line 5,
after having performed ρr1 in line 4—a contradiction with property P .

– r1 returns in line 1.
In that case, ρr1 is line 4 or line 6 of the read operation that precedes r1. Again, since ρr1 →L

ρr2, r2 does not return in line 1, from which we conclude that, before performing ρr2, r2 sees
RR ̸= WR in line 1. On the other hand, r1 sees RR = WR in line 1 after having performed
ρr1 which contradicts property P and concludes the proof.

Thus, π is an atomic reading function. ✷Theorem 13

6.3.5 Cost of the algorithms

The cost of the R.read() and R.write(v) operations is measured by the the maximal and minimal numbers
of accesses to the base registers. Let us remind that the writer (resp., reader) does not read WR (resp., RR)
as it keeps a local copy of that register.

• R.write(v): maximal cost: 3; minimal cost: 2.

• R.read(): maximal cost: 7; minimal cost: 1.

The minimal cost is realized when the same type of operation (i.e., read or write) is repeatedly executed
while the operation of the other type is not invoked.

Let us remark that we have assumed that if R.write(v) and R.write(v′) are two consecutive write
operations, we have v ̸= v′. This means that if the upper layer issues two consecutive write operations
with v = v′, the cost of the second one is 0, as it is skipped and consequently there is no accesses to base
registers.

6.4 Bibliographic notes

Tromp 1989

Lamport 86 (1W2R, but very inefficient)

74

Chapter 7

Unbounded register constructions

The register constructions in Chapters 4 and 6 we present algorithms that implement bounded (i.e., storing
values from an unbounded range) atomic registers using bounded safe registers.

We now discuss implementations using unbounded base objects. The algorithms presented below use
the notion of a sequence number. Each written value is associated with a sequence number that intuitively
captures the number of write operations performed up to now. A typical base register consists of two fields:
a data field that stores the value of the register and a control field that stores the sequence number associated
with it.

7.0.1 1W1R registers: From unbounded regular to atomic

We show in the following how to implement an 1W1R atomic register using a 1W1R regular register. The
use of sequence numbers make such a construction easy and helps in particular prevent the new/old inver-
sion phenomenon. Preventing this, while preserving regularity, means, by Theorem 5, that the constructed
register is atomic.

The algorithm is described in Figure 7.1. Exactly one base regular register REG is used in the imple-
mentation of the high-level register R. The local variable sn at the writer is used to hold sequence numbers.
It is incremented for every new write in R. The scope of the local variable aux used by the reader spans a
read operation; it is made up of two fields: a sequence number (aux.sn) and a value (aux.val).

Each time it writes a value v in the high-level register, R, the writer writes the pair [sn, v] in the base
regular register REG. The reader manages two local variables: last sn stores the greatest sequence number
it has even read in REG, and last val stores the corresponding value. When it wants to read R, the reader
first reads REG, and then compares last sn with the sequence number it has just read in REG. The value
with the highest sequence number is the one returned by the reader and this prevents new/old inversions.

Theorem 14 Given an unbounded 1W1R regular register, the algorithm described in Figure 7.1 constructs
a 1W1R atomic register.

Proof The proof is similar to the proof of Theorem 5. We associate with each read operation r of the high-
level register R, the sequence number (denoted sn(r)) of the value returned by r: this is possible as the base
register is regular and consequently a read always returns a value that has been written with its sequence
number, that value being the last written value or a value concurrently written -if any-. Considering an
arbitrary history H of register R, we show that H is atomic by building an equivalent sequential history S
that is legal and respects the partial order on the operations defined by→H .

75

operation R.write(v):
sn← sn+ 1;
REG← [sn, v];
return ()

operation R.read():
aux← REG;
if (aux.sn > last sn) then last sn← aux.sn;

last val← aux.val end if;
return (last val)

Figure 7.1: From regular to atomic: unbounded construction

S is built from the sequence numbers associated with the operations. First, we order all the write
operations according to their sequence numbers. Then, we order each read operation just after the write
operation that has the same sequence number. If two reads operations have the same sequence number, we
order first the one whose invocation event is first. (Remember that we consider a 1W1R register)

The history S is trivially sequential as all the operations are placed one after the other. Moreover, S
is equivalent to H as it is made up of the same operations. S is trivially legal as each read follows the
corresponding write operation. We now show that S respects→H .

• For any two write operations w1 and w2 we have either w1 →H w2 or w2 →H w1. This is because
there is a single writer and it is sequential: as the variable sn is increased by 1 between two consecutive
write operations, no two write operations have the same sequence number, and these numbers agree
on the occurrence order of the write operations. As the total order on the write operations in S is
determined by their sequence numbers, it consequently follows their total order in H .

• Let op1 be a write or a read operation, and op2 be a read operation such that op1→H op2. It follows
from the algorithm that sn(op1) ≤ sn(op2) (where sn(op) is the sequence number of the operation
op). The ordering rule guarantees that op1 is ordered before op2 in S.

• Let op1 be a read operation, and op2 a write operation. Similarly to the previous item, we then have
sn(op1) < sn(op2), and consequently op1 is ordered before op2 in S (which concludes the proof).

✷Theorem 14

One might think of a naı̈ve extension of the previous algorithm to construct a 1WMR atomic register
from base 1W1R regular registers. Indeed, we could, at first glance, consider an algorithm associating one
1W1R regular register per reader, and have the writer writes in all of them, each reader reading its dedicated
register. Unfortunately, a fast reader might see a new concurrently written value, whereas a reader that
comes later sees the old value. This is because the second reader does not know about the sequence number
and the value returned by the first reader. The latter stores them locally. In fact, this can happen even if
the base 1W1R registers are atomic. The construction of a 1WMR atomic register from base 1W1R atomic
registers is addressed in the next section.

7.0.2 Atomic registers: from unbounded 1W1R to 1WMR

We presented in Section 5.1.1 an algorithm that builds a 1WMR safe/regular register from similar 1W1R
base registers. We also pointed out that the corresponding construction does not build a 1WMR atomic
register even when the base registers are 1W1R atomic (see the counter-example presented in Figure 5.2).

76

This section describes such an algorithm: assuming 1W1R atomic registers, it shows how to go from
single reader registers to a multi-reader register. This algorithm uses sequence numbers, and requires un-
bounded base registers.

Overview. As there are now several possible readers, actually n, we make use of several (n) base 1W1R
atomic registers: one per reader. The writer writes in all of them. It writes the value as well as a sequence
number. The algorithm is depicted in Figure 7.2.

We prevent new/old inversions (Figure 5.2) by having the readers “help” each other. The helping is
achieved using an array HELP [1 : n, 1 : n] of 1W1R atomic registers. Each register contains a pair (se-
quence number, value) created and written by the writer in the base registers. More specifically, HELP [i, j]
is a 1W1R atomic register written only by pi and read only by pj . It is used as follows to ensure the atomicity
of the high-level 1WMR register R that is constructed by the algorithm.

• Help the others. Just before returning the value v it has determined (we discuss how this is achieved
in the second bullet below), reader pi helps every other process (reader) pj by indicating to pj the
last value pi has read (namely v) and its sequence number sn. This is achieved by having pi update
HELP [i, j] with the pair [sn, v]. This, in turn, prevents pj from returning in the future a value older
than v, i.e., a value whose sequence number would be smaller than sn.

• Helped by the others. To determine the value returned by a read operation, a reader pi first computes
the greatest sequence number that it has ever seen in a base register. This computation involves all
1W1R atomic registers that pi can read, i.e., REG[i] and HELP [j, i] for any j. pi. Reader pi then
returns the value that has the greatest sequence number pi has computed.

The corresponding algorithm is described in Figure 7.2. Variable aux is a local array used by a reader;
its jth entry is used to contain the (sequence number, value) pair that pj has written in HELP [j, i] in order
to help pi; aux[j].sn and aux[j].val denote the corresponding sequence number and the associated value,
respectively. Similarly, reg is a local variable used by a reader pi to contain the last (sequence number,
value) pair that pi has read from REG[i] (reg.sn and reg.val denote the corresponding fields).

Register HELP [i, i] is used only by pi, which can consequently keep its value in a local variable. This
means that the 1W1R atomic register HELP [i, i] can be used to contain the 1W1R atomic register REG[i].
It follows that the protocol requires exactly n2 base 1W1R atomic registers.

operation R.write(v):
sn← sn+ 1;
for all j in {1, . . . , n} do REG[i]← [sn, v] end do;
return ()

operation R.read() issued by pi:
reg ← REG[i];
for all j in {1, . . . , n} do aux[j]← HELP [j, i] end do;
let sn max be max(reg.sn, aux[1].sn, . . . , aux[n].sn);
let val be reg.val or aux[k].val such that the associated seq number is sn max;
for all j in {1, . . . , n} do HELP [i, j]← [sn max, val] end do;
return (val)

Figure 7.2: Atomic register: from one reader to multiple readers (unbounded construction)

77

Theorem 15 Given n2 unbounded 1W1R atomic registers, the algorithm described in Figure 7.2 implements
a 1WMR atomic register.

Proof As for Theorem 5, the proof consists in showing that the sequence numbers determine a linearization
of any history H .

Considering an history H of the constructed register R, we first build an equivalent sequential history
S by ordering all the write operations according to their sequence numbers, and then inserting the read
operations as in the proof of Theorem 5. This history is trivially legal as each read operation is ordered
just after the write operation that wrote the value that is read. A similar reasoning similar as the one used in
Theorem 5, but based on the sequence numbers provided by the arrays REG[1 : n] and HELP [1 : n, 1 : n],
shows that S respects→H . ✷Theorem 15

7.0.3 Atomic registers: from unbounded 1WMR to MWMR

This section shows how to use sequence numbers to build a MWMR atomic register from n 1WMR atomic
registers (where n is the number of writers). The algorithm is simpler than the previous one. An array
REG[1 : n] of n 1WMR atomic registers is used in such a way that pi is the only process that can write
in REG[i], while any process can read it. Each register REG[i] stores a (sequence number, value) pair.
Variables X.sn and X.val are again used to denote the sequence number field and the value field of the
register X, respectively. Each REG[i] is initialized to the same pair, namely, [0, v0] where v0 is the initial
value of R.

The problem we solve here consists in allowing the writers to totally order their write operations. To that
end, a write operation first computes the highest sequence number that has been used, and defines the next
value as the sequence number of its write. Unfortunately, this does not prevent two distinct concurrent write
operations from associating the same sequence number with their respective values. A simple way to cope
with this problem consists in associating a timestamp with each value, where a timestamp is a pair made up
of a sequence number plus the identity of the process that issues the corresponding write operation.

The timestamping mechanism can be used to define a total order on all the timestamps as follows. Let
ts1 = [sn1, i] and ts1 = [sn2, j] be any two timestamps. We have:

ts1 < ts2
def
=

(
(sn1 < sn2) ∨ (sn1 = sn2 ∧ i < j)

)
.

The corresponding construction is described in Figure 7.3. The meaning of the additional local variables
that are used is, we believe, clear from the context.

Theorem 16 Given n unbounded 1WMR atomic registers, the algorithm described in Figure 7.3 implements
a MWMR atomic register.

Proof Again, we show that the timestamps define a linearization of any history H .
Considering an history H of the constructed register R, we first build an equivalent sequential history S

by ordering all the write operations according to their timestamps, then inserting the read operations as in
Theorem 5. This history is trivially legal as each read operation is ordered just after the write operation that
wrote the read value. Finally, a reasoning similar to the one used in Theorem 5 but based on timestamps
shows that S respects→H . ✷Theorem 16

78

operation R.write(v) issued by pi:
for all j in {1, . . . , n} do reg[j]← REG[j] end do;
let sn max be max(reg[1].sn, . . . , reg[n].sn) + 1;
REG[i]← [sn max, v];
return ()

operation R.read() issued by pi:
for all j in {1, . . . , n} do reg[j]← REG[j] end do;
let k be the process identity such that [sn, k] is the greatest timestamp

among the n timestamps [reg[1].sn, 1], . . . and [reg[n].sn, n];
return (reg[k].val)

Figure 7.3: Atomic register: from one writer to multiple writers (unbounded construction)

7.1 Concluding remark

The algorithms presented in this chapter assume that the sequence numbers may grow without bound, hence
the assumption of unbounded base registers. This may appear unnecessary if the values written to the
implemented registers are taken from a bounded range. There are techniques to bound the capacity of the
control part of a register by a function of the number of processes in the system.

7.2 Bibliographic notes

The notions of safe, regular and atomic registers have been introduced by Lamport [64].
Theorem 5, and the algorithms described in Figure 5.1, Figure 5.3, Figure 5.4 and Figure 5.5 are due to

Lamport [64]. The algorithm described in Figure 5.7 is due to Vidyasankar [86]. The algorithms described
in Figure 7.2 and 7.3 are due to Vityani and Awerbuch [90].

The wait-free construction of stronger registers from weaker registers has always been an active research
area. The interested reader can consult the following (non-exhaustive!) list where numerous algorithms are
presented and analyzed [11, 16, 21, 22, 42, 55, 65, 83, 87, 88, 89].

7.3 Exercises

1. Give an example of a history of a read-write atomic register that allows for a regular but not atomic
reading function.

2. Prove that the implementation of a one-writer one-reader (1W1R) atomic register is correct (Trans-
formation IV in the slides).

Hint: argue that to prove that the implementation is indeed linearizable, it is enough to show that if
read1 precedes read2, then read2 cannot return the value written before the value returned by read1.
Check the claim and the rest is trivial.

3. Consider the implementation of a one-writer N -reader (1WNR) atomic register (Transformation V
in the slides).

The code of read() involves writing the value just read back to RR[][]. Is it possible to devise an
implementation in which the reader does not write?

79

4. Give a multi-writer multi-reader (NWNR) atomic register implementation from 1W1R atomic reg-
isters and sketch a proof of its correctness.

80

Part III

Snapshots

81

Chapter 8

Collect and Snapshot objects

Until now we discussed read-write abstractions in which a read operation returns the “last written” value
of a single register. It is however convenient to have an abstraction in which every process has a dedicated
memory location to write and there is a single operation that returns the “last” value written of each other
process. As usual, we expect the cooperation to be wait-free, and we vary the definition of the last written
value. We start with from the weaker collect object, and then proceed to the stronger snapshot and immediate
snapshot objects.

8.1 Collect object

A collect object exports the operation store() that is used to post values and the operation collect() that
returns the values that have been posted so far that define a view. More precisely, a view V is an n-vector,
with one value per process. A store(v) is invoked by process pi to replace the value in position i of the view
with v. If no value has been posted by pi so far, the view returned by a collect() operation contains ⊥ at
position i.

8.1.1 Definition

Let H be a history of events on a collect object: inv [store()], resp[store()], inv [collect()] resp[collect()]
issued by the processes. Recall that <H denotes the total order on the events in H and →H denoted the
real-time order on the operations in H . As usual, we assume that H is well-formed: no process invokes a
new operation on the collect object before its previous operation returns. Thus, any two operations invoked
by a given process in H are related by→H .

A collect object can be seen as an array of N elements. Each element i can be updated by process i
using the store() operation. An evaluation of the content of the array can be obtained using the collect()
operation: each position i of the returned n-vector, called a view, contains the argument of a concurrent store
operation or the argument of the latest store operation of pi.

For simplicity, in the rest of the section, we assume that every value written by a given process pi,
including the initial value in position i, is unique. This way the value at position i in a view V returned by
a collect operation is associated with a unique store operation si by pi that has written that value, and we
simply write si ∈ V (the initial value the view is associated with an artificial “initializing” store operation
performed by pi in the beginning). We also say that view V is contained in a view V ′, and we write V ≤ V ′,
if for all j, V [j] is written before V ′[j]. We write V < V ′ if V ≤ V ′ and V ̸= V ′. For snapshot operations

83

S and S′ that return views V and V ′, respectively, such that V ≤ V ′, we say that S is contained in S′, and
write S ≤ S′.

Formally, every history H of invocations and responses on a collect object must satisfy the following
properties (here C denotes a collect operation and si denotes a store operation of process pi):

B0 : For each collect operation C that returns V , and each si ∈ V : C¬ →H si. (No collect returns a
value not yet written.)

B1 : For each collect operation C that returns V , store operations si and sj , such that sj ∈ V : (si →H

C)⇒ (si = sj ∨ si →H sj). (No collect returns an overwritten value.)

B2 : ∀ V, V ′ returned by C,C ′: (C →H C ′) ⇒ (V ≤ V ′). (A preceding collect is contained in a
subsequent one.)

A straightforward implementation of a collect object maintains n atomic registers, REG [1], . . . ,REG [n],
one per process. To store a value, pi simply writes it to REG [i]. To collect the content, pi reads REG [1], . . . ,REG [n]
in any order. We can construct a collect reading function as a composition of corresponding atomic reading
functions π1, . . . ,πn: for each collect operation, define π(C)[i] = πi(rCi), where rCi is the read operation on
REG [i] performed within C . The reader can easily see that the resulting reading function satisfies properties
B0−−B1 above.

8.1.2 A collect object has no sequential specification

Intuitively, an abstraction A has a sequential specification S, if its behavior can be expressed through a set
of sequential histories in S, i.e., any implementation of A “behaves” like an atomic implementation of S.
Formally:

• Every implementation of A is an atomic implementation of S, and

• Every atomic implementation of S is an implementation of A.

Note that the second property implies that every sequential history of S should be a history of A. If an
abstraction A has a sequential implementation, we say that A is an atomic object.

Lemma 5 Collect is not an atomic object.

Proof Suppose, by contradiction, that the collect abstraction has a sequential specification S that is respected
by any atomic implementation of collect.

Consider the execution history in Figure 8.1. Here the collect() issued by p1 operation is concurrent
with two store operations issued by p2 and p3. The history could have been exported by an execution of the
simple algorithm described above, where p1, within its collect() operation, reads REG [2] before any write
on REG [2] performed by p2 and REG [3] after the write on REG [3] performed by p3.

By our assumption, the history should be atomic with respect to S. We recall that any linearization
of H should respect the real-time order on operations and, thus, we should put [store(v) by p2] before
[store(v′) by p3] in any linearization of H . We establish a contradiction by showing that there is no way to
find a place for the collect() operation in any such linearization.

Suppose that S allows placing the collect() operation before [store(v′) by p3]. Thus, S contains a
sequential history that violates property B0 of collect (the collect operation returns a value which is not
written yet)!

84

Now suppose that S allows placing the collect() operation after [store(v′) by p3]. This results in a
history that violates property B1 of collect (the collect operation returns an overwritten value)! ✷Lemma 5

p1

p2

⊥

⊥

⊥

collect()→ [⊥,⊥, v′]

p3
store(v′)

store(v)

Figure 8.1: A collect object has no sequential specification

8.2 Snapshot object

One of the reasons why the collect object cannot be captured by a sequential specification is that it allows
concurrent collect operations to return views that are not “ordered”, i.e., not related by containment.

In this chapter, we introduce an “atomic restriction” of collect: a snapshot object that exports two
operations: update() and snapshot (). The snapshot () operation returns a vector of n values (one per
process). The value in position i of the vector contains the argument of the last preceding or a concurrent
update() operation executed by process pi.

In every history H , a snapshot object satisfies the properties of collect (Section 8.1.1), where store and
collect are replaced with update and snapshot , respectively, plus the following two properties:

B4 (Snapshot order) For all views V and V ′ obtained by snapshot operations, (V ≤ V ′) ∨ (V ′ ≤ V).

B5 (Update order) For all updates u (by a process pi) and u′, and every view V obtained by a snapshot
operation, if u→H u′ and u′ ∈ V , then V contains the u or a later update at position i.

In other words, non-concurrent updates cannot be observed by snapshot operations in the opposite
order.

The sequential specification of type snapshot defines the set of allowed sequential histories of update
and snapshot operations. In every such sequential history, each position i of the vector returned by every
snapshot operation contains the argument of last preceding update operation of pi (if any, or the initial value
otherwise). Note that, unlike the operational definitions of collect and snapshot objects proposed above, the
definition of the sequential snapshot type is valid even if we do not assume that every value written by a
given process is unique.

Intuitively, a concurrent implementation of the snapshot type gives the illusion of update and snapshot
operations taking place instantaneously. We show that this type indeed captures the behavior of a snapshot
object.

Lemma 6 The snapshot abstraction is atomic (with respect to the snapshot type).

Proof Consider a finite history H of a snapshot implementation. Recall that H satisfies properties B1-B3
of collect (where store and collect are replaced with update and snapshot), plus B4 (Snapshot Order) and
B5 (Update Order).

85

We construct a linearization L of H as follows. First we order all complete snapshot operations in H ,
based on the ≤ relation, which is possible by property B4. Moreover, by B3, the ordering respects the real-
time order→H . Indeed, by B3, if a snapshot operation that returns V ′ precedes (→H) a snapshot operation
that returns V ′, then V ≤ V ′.

Let update(v) = U be an operation performed by pi. U is then inserted in L just before the first snapshot
operation that returns v or a later value in position i, or at the end of the sequence if there is no such a snap-
shot. After having done this for every update, we obtain a sequence [U0], S1, [U1], S2, [U2], . . . , Sk, [Uk],
where each [Uj] is a (possibly empty) sequence of update operations U such that snapshot Sj returns values
older that written by U and Sj+1 returns the value written by U or a later value. Now we rearrange elements
of each [Uj] so that the real-time order is respected. This is possible since the real-time order is acyclic.

Now we show that the resulting linearization L respects the order→H . Consider two operations op and
op′, such that op→H op′. Three cases are possible:

• Both op and op′ are update operations. Let op and op′ belong to [Uℓ] and [Um], respectively. If m = k
(op′ belongs to the last subsequence of updates in L), then, by construction, op→L op′.

Now suppose that ℓ < k. By the construction of L, Sm+1 is the first snapshot that returns the value
written by op′ or a later value at the corresponding position. By B5, Sm+1 also returns the value
written by op or a later value at the corresponding position and, thus, ℓ ≤ m. Thus, op→L op′.

• Both op and op′ are snapshot operations that return views V and V ′, respectively. If op′ is incomplete,
then it does not appear in L. If op′ is complete, then, by B3 (Section 8.1.1), V ≤ V ′. Thus, by
construction, if op′ appears in L, we have op→L op′ in L.

• op is an update and op′ is a snapshot. By B2 (Section 8.1.1), op′ returns the value written by op or a
later value, and, by the construction of L and B4, op→L op′.

• op is a snapshot and op′ is an update. By B1 (Section 8.1.1), the value written by op′ does not appear
in the result of op. By the construction of L, op→L op′.

Thus, any snapshot object is an atomic implementation of the snapshot type.
Now consider a history H of a atomic implementation of the snapshot type. We are going to show

that H satisfies properties B1 − B5 of atomic snapshot. Let L be a linearization of H , i.e., L respects the
real-time order in H , L is legal with respect to the snapshot type, and L is equivalent to a completion of
H . Recall that, in particular, L contains every complete operation in H .

• Suppose that a snapshot operation S returns a value v at position i in H . Since L is legal (with respect
to the snapshot type), v is the value written by the last update u of pi that precedes S in L. Since L
respects the real-time order, S cannot precede u in H , and, thus, B1 is ensured in H .

• Suppose an update u precedes a snapshot S in H . Since L respects the real-time order of H , u pre-
cedes S also in L. Since L is legal, S returns the value written by u or a later value at the corresponding
position and, thus, B2 is ensured in H .

• Suppose a snapshot S1 precedes a snapshot S2 in H . Since L respects the real-time order of H , S1

precedes S2 also in L. Legality of L implies that S1 ≤ S2 and, thus, B3 is ensured in H .

• All complete snapshot operations appear in L and, since L is legal, are related by ≤: B4 is ensured in
H .

86

operation update (v) invoked by pi:
sni := sni + 1 { local sequence number generator }
REG [i] := [v, sni] { store the pair }

Figure 8.2: Update operation

operation snapshot ():
1 aa := REG .scan();
2 repeat forever
3 bb := REG .scan();
4 if (aa = bb) then return (aa.val) end if; { return the vector of read values }
5 aa := bb
6 end while.

Figure 8.3: Snapshot operation

• Suppose that an update u1 precedes an update u2 and a snapshot S returns the value written by u2.
Since L respects→H and is legal, we have u1 →L u2 and u2 →L S. Thus, u1 →L S and, since L is
legal, S returns the value written by u1 or a later value at the corresponding position: B5 is ensured
in H .

Thus, any atomic implementation of the snapshot type is indeed is a snapshot object. ✷Lemma 6

8.2.1 Non-blocking snapshot

We start with a simple non-blocking implementation of snapshot type that only guarantees that at least
one correct process completes each of its operations. The construction assumes that the underlying base
registers can store values of arbitrary size, i.e., we may associated ever-growing sequence numbers with
every stored value. Then we turn the construction into an unbounded wait-free one. Finally, we present a
wait-free snapshot implementation that uses bounded memory. (Of course, there we drop the assumption
that every value written by a given process is unique.)

Our n-process implementation of snapshot uses an array of atomic registers REG []. Each value that
can be stored in a register REG [i] is associated with a sequence number that is incremented each time a
new value is stored. So each REG [i] consists of two fields, denoted REG [i].sn and REG [i].val. The
implementation of update() is presented in Figure 8.2. Here sni is a local variable that pi uses to generate
sequence numbers.

To maintain consistency across the results of snapshot operations, each snapshot operation is imple-
mented using the “double scan” technique: the process keeps reading registers REG [1, . . . , n] until two
consecutive collects return identical results. The result of the last scan is then returned by the snapshot
operation.

The scan() function asynchronously reads the last (sequence number, data) pairs posted by each process:
function REG .scan(): for j ∈ {1, . . . , n} do r[j] := REG [j] end do; return (r).

Theorem 17 The algorithm in Figures 8.2 and 8.3 is a non-blocking atomic snapshot implementation.

87

Proof To prove that the implementation is non-blocking, consider any infinite execution of the algorithm.
Every We observe first that the update operation contains only one base-object step. Consider an infinite
execution of the algorithm, and suppose that a snapshot operation performed by a correct process pi never
terminates. By the algorithm, pi thus executes infinitely many scans of REG . The only reason not to return
in line 4 is to find out that one of the positions in REG has changed since the last scan. Thus, for every two
consecutive scan operations C1 and C2 executed by pi, another process pj executes an update operation U
such that write to REG [j] in U takes place between the read of REG [j] in C1 and the read of REG [j] in
C2. Since there are only finitely many processes, at least one process performs infinitely update operations
concurrently with the snapshot operation of pi. Thus, in every infinite execution of the algorithm, at least
one correct process completes every its operation. So the implementation is indeed non-blocking.

Now we prove atomicity. Let E be any finite execution of the algorithm and H be the corresponding
history. Consider any complete snapshot () operation in E. Let C1 and C2 be its last two scans. By the
algorithm, C1 and C2 return the same result. Now we choose the linearization point of the snapshot operation
to be any point in E between the response of C1 and the invocation of C2 (see example in Figure 8.4).
Otherwise, if a snapshot operation does not return in E, we remove the operation from our completion of
the corresponding history H .

Consider now an update(v) operation executed by a process pi in E. We linearize the operation at the
point when it performs a write on REG [i] in E (if it does not, we remove it from the completion of H).

Let L be the resulting linearization of H , i.e., the sequential history where operations appear in the order
of their linearization points in E. By the construction, L is equivalent to a completion of H . Also, since
each operation is linearized within its interval in E, L respects the real-time order of H . We show that L is
legal, i.e., at every position i, every snapshot operation in L returns the value written by the latest preceding
update of pi.

Let S be a snapshot operation in L, and let C1 and C2 be the two last scans of S. For each pi, let ui be
the last update operation of pi preceding S in L. Recall that ui is linearized at the write on REG [i] and S
is linearized between the response of C1 and the invocation of C2. Since, by the algorithm, C1 and C2 read
the same value in REG [i], no write on idREG[i] takes place between the read of REG [i] performed within
C1 and the read of REG [i] performed within C2. Thus, since the write operation performed within ui is the
last write on REG [i] to precede the linearization point of S in E, we derive that it is also the last write on
REG [i] to precede the read of REG [i] performed within C1.

Therefore, for each pi, the value of pi returned by C1 and, thus, by S is the value written by ui.
Hence, L is lega, and the algorithm in Figures 8.2 and ?? provides an atomic implementation of snap-
shot. ✷Theorem 17

8.2.2 Wait-free snapshot

In the non-blocking snapshot implementation in Figures 8.2 and 8.3, update operations may starve a snapshot
operation out by “selfishly” updating REG . This implementation can be turned into a wait-free one using
helping: an update operations can help concurrent snapshot operations to terminate. An update operation
may itself take a snapshot of and store the result together with the new value in REG (Figure 8.5). Of
course, for this helping mechanism to work, we need to make sure that the intertwined snapshot and update
operations do not prevent each other from terminating.

First we can make the following two observations on the non-blocking snapshot implementation:

• If two consecutive scans performed within a snapshot operation are not identical (and, thus, the snap-
shot operation cannot return), then at least one process has concurrently performed an update opera-

88

linearization point of snapshot()

REG [1]

REG [4]

REG [3]

REG [2]

second scan() snapshot()

time line

aai[2].sn = b

aai[3].sn = c

aai[1].sn = a = REG [1].sn

bbi[2].sn = b

aai[4].sn = d

bbi[1].sn = a

bbi[3].sn = c

bbi[4].sn = d = REG [4].sn

first scan()

Figure 8.4: Linearization point of a snapshot () operation

U2

pi

pj

U1

S

Shelp

Figure 8.5: Each update() operation includes a snapshot () operation

tion.

• If a snapshot operation S issued by a process pi witnesses that the value of REG [j] has changed twice,
i.e., pj concurrently executed two update operations u1 and u2, then the second of these updates was
entirely performed within the interval of S (see Figure 8.5). This is because the update by pj of the
base atomic register REG [j] is the last operation executed in an update() operation.

As the execution interval of the second update falls entirely within the interval of S, we may use the
update to “help” S:

• Within u2, pj takes a snapshot itself (using the algorithm in Figure 8.3) and writes the result help to
REG [j].

• Within S, pi uses the result read in REG [j] as the response of S. This is going to be a valid result,
since the execution of u2 (and, thus, of the snapshot performed by u2) takes place entirely within the
interval of S, so S can simply “borrow” the snapshot result help from U2.

Note that for this kind of helping to work, S must witness at least two concurrent updates of the same
process. For example, even though the write on REG [j] performed within u1 takes place within the interval
of S, the snapshot written by u1 together with its value may have taken place way before the invocation of
S. Thus, adopting the result of u1’s snapshot as the result of S may violate linearizability, since it may miss
updates executed after the snapshot taken by u1 but before the invocation of S. This is why, before adopting
the snapshot taken by pj , pi should wait until it observes the second change in REG [j].

89

The resulting implementations of update() and snapshot () are described in Figure 8.6. The atomic
register REG [i] consists now of three fields, REG [i].val and REG [i].sn as before, plus the new field
REG [i].help array that contains the result of the snapshot taken by pi in the course of its latest update
operation.

The new local variable idcould helpi is used by process pi when it executes snapshot (). Initially ∅,
idcould helpi contains the set of the processes that terminated update operations concurrently with the
snapshot operation currently executed by pi (lines 11-15). When pi observes that a process pj ∈ could help
updated its value in REG , i.e., pi finds out that aai[j].sn ̸= bbi[j].sn, pi returns REG [j].help array as the
result of its snapshot operation.

operation update(v) invoked by pi:
(1) help arrayi := snapshot();
(2) sni := sni + 1;
(3) REG[i] := (v, sni, help arrayi)

operation snapshot():
(4) could helpi := ∅;
(5) aai := scan();
(6) while true do
(7) bbi := scan();
(8) if (∀j ∈ {1, . . . , n} : aai[j].sn = bbi[j].sn)
(9) then return (aai.val)
(10) else for each j ∈ {1, . . . , n} do
(11) if (aai[j].sn ̸= bbi[j].sn) then
(12) if (j ∈ could helpi)
(13) then return (bbi[j].help array)
(14) else could helpi := could helpi ∪ {j}
(15) end if end if
(16) end for
(17) end if;
(18) aai := bbi
(19) end while

Figure 8.6: Atomic snapshot object construction

8.2.3 The snapshot object construction is bounded wait-free

Theorem 18 Each update() or snapshot () operation returns after at most O(n2) operations on base reg-
isters.

Proof Let us first observe that an update() by a correct process always terminates as long as the snapshot ()
operation it invokes always returns. So, the proof consists in showing that any snapshot () issued by a correct
process pi terminates.

Suppose, by contradiction, that a snapshot operation executed by pi has not returned after having exe-
cuted n times the while loop (lines 5-19). Thus, each time it has executed the loop, pi has found out that for
some new j /∈ could helpi, aai[j].sn ̸= bbi[j].sn (line 11), i.e., pj has executed a new update() operation
since the last scan() of pi. After this j is added to the set could helpi in line 14.

Note that i /∈ could helpi (pi does not change the value of REG [i] while executing snapshot ()). Thus,
after n− 1 iterations, could helpi contains all other n− 1 processes {1, . . . , i− 1, i+1, . . . , n}. Therefore,
when pi executes the while loop for the nth time, for any pj such that aai[j].sn ̸= bbi[j].sn (line 11), it

90

finds j ∈ idcould helpi in line 12. By the algorithm, pi returns in line 13, after having executed n iterations
in lines 5-19—a contradiction.

Thus, every snapshot operation returns after having executed at most n while loops in lines 5-19. Since
every loop involves exactly n base-object reads (in the scan operation on registers REG [1], . . . ,REG [n]),
every snapshot terminates in O(n2) base-object steps. Same holds for an update operation, since it addition-
ally executes only one base-object write. ✷Theorem 18

8.2.4 The snapshot object construction is atomic

Theorem 19 The object built by the algorithms described in Figure 8.6 is atomic with respect to the snap-
shot type.

Proof Let E be an execution of the algorithm and H be the corresponding history of E. To prove that the
algorithm is indeed an atomic snapshot implementation, we construct a linearization of H , i.e., a total order
L on the operations in H such that: (1) L is equivalent to a completion of H , (2) L respects the real-time
order of H , and (3) L is legal, i.e., each snapshot () operation S in L returns, for each process pj , the value
written by the last update() operation of pj that precedes S in L.

The desired linearization L is built as follows. The linearization point of a complete update() operation
in E is the write in the corresponding 1WMR register (line 3). Incomplete update operations are not included
to L. The linearization point of a snapshot () operation S issued by a process pi depends on the line at which
it returns.
(i) The linearization point of a S operation that terminates in line 9 (successful double scan()) is at any
time time between the end of the first scan() and the beginning of the second scan() (see the proof of
Theorem 17 and Figure 8.4).
(ii) The linearization point of a S operation that terminates in line 13 (i.e., pi terminates with the help of
another process pj) is defined inductively as follows (see Figure 8.7). The arrows show the direction in
which snapshot results are adopted by one operation from another.

pi
snapshot()

pj1
update() update()

snapshot()

help array

update()

successful double scan

update()
pjk

help array

snapshot()

Figure 8.7: Linearization point of a snapshot () operation (case ii)

Since S returns in line 13, the array (say help array) returned by pi has been provided by an update()
operation executed by some process pj1 . As we observed earlier, this update() has been entirely executed
within the interval of S. Indeed, help array is the result of the second update operation of pj that is observed

91

by pi to be concurrent with S. Thus, this update started after the invocation of S and its last event (the write
in REG [j] in line 8) before the response of S.

Recursively, help array has been obtained by pj1 from a successful double scan, or from another process
pj2 . As there are at most n concurrent processes, it follows by induction that there is a process pjk that has
executed a snapshot () operation within the interval of S and has obtained help array from a successful
double scan.

The linearization point of the snapshot () operation issued by pi is thus defined as the linearization point
of snapshot () operation of pjk whose double scan determined help array .

This association of linearization points to the operations in H results in a linearization L that puts the
operation in the order their linearization points appear in E. L trivially satisfies properties (1) and (2) stated
at the beginning of the proof. Reusing the proof of Theorem 17, we observe that, for every pj , every snapshot
operation S (be it a standalone snapshot or a part of an update) returns the value written to REG [j] by the
last update of pj to precede the linearization point of S in E. Thus, L also satisfies (3), and the algorithm in
Figure 8.6 is an atomic implementation of snapshot. ✷Theorem 19

8.2.5 Bounded snapshot object

Dolev-Shavit’s bounded timestamps

Bibliographic notes

Afek et al. JACM

Aguilera 04

Attiya-Fouren

Borowsky-Gafni 93

Masuzawa 94, MWMR and O(n)

Exercises

One-shot snapshot from renaming (attiya)

92

Chapter 9

Immediate Snapshot and Iterated
Immediate Snapshot

9.1 Immediate snapshot object

9.1.1 Immediate snapshot and participating set problem

One-shot immediate snapshot object A one-shot immediate snapshot object is a snapshot object where
the update() and snapshot() are fused in a single operation denoted update snapshot(), and such that
each process invokes at most once that operation. When a process pi invokes update snapshot(v), it de-
posits v as its last value and obtains a set Vi made up of (process identity, value) pairs. From an external
observer point of view, everything has to appear as if the operation was executed instantaneously. (An anal-
ogous operation has been seen in the context of store-collect objects, where the store collect() operation
fuses store() and collect().)

More formally, a one-shot immediate snapshot object is defined by the following properties. Let Vi

denote the set returned by pi when it invokes update snapshot(vi).

• Liveness. An invocation of update snapshot(v) by a correct process terminates.

• Self-inclusion. (i, vi) ∈ Vi.

• Set inclusion. ∀i, j : Vi ⊆ Vj or Vj ⊆ Vi.

• Immediacy. ∀i, j : if (j, vj) ∈ Vi then Vj ⊆ Vi.

The first three properties are satisfied by a snapshot object where the update snapshot() is implemented
by a update(vi) invocation followed by a snapshot() invocation. The last immediacy property is not
satisfied by this implementation, which shows the fundamental difference between snapshot and immediate
snapshot. This is illustrated in the Figures 9.1 and 9.2.

Figure 9.1 shows three processes p1, p2 and p3. Each process executes an update() followed by a
snapshot(). The process identity appears as a subscript in the operation invoked. Moreover, the value
written by pi is i. According to the specification of the snapshot object, snapshot1() returns [1, 2,⊥]
(where ⊥ is the value initially placed in the register associated with each process), while snapshot2() and
snapshot3() return [1, 2, 3]. This means that it is possible to associate with this execution the following
sequence of operations Ŝ

update1(1) update2(2) snapshot1() update3(3) snapshot2() snapshot3(),

93

snapshot2()

p1

p2

p3

update1(1) snapshot1()

update3(3)

update2(2)

snapshot3()

Figure 9.1: update() and snapshot() operations

thereby showing the atomicity of this execution.

update snapshot3(3)

p1
update snapshot1(1)

p2
update snapshot2(2)

p3

Figure 9.2: update snapshot() operations

Figure 9.2 shows the same processes where the operations updatei() and snapshoti() issued by pi are
replaced by a single update snapshoti() (that starts at the same time as updatei() starts, and terminates at
the same time as snapshoti() terminates). As update snapshot1(1) terminates before update snapshot3(3)
starts, it is not possible for the latter to return the value 1 written by p1. Let Vi be the set of pairs returned
by pi. The following results are possible:

- V1 = {(1, 1)}, V2 = {(1, 1), (2, 2)}, and V3 = {(1, 1), (2, 2), (3, 3)},
- V1 = V2 = {(1, 1), (2, 2)}, and V3 = {(1, 1), (2, 2), (3, 3)},
- V2 = {(2, 2)}, V1 = {(1, 1), (2, 2)}, and V3 = {(1, 1), (2, 2), (3, 3)},
- V1 = {(1, 1)}, and V2 = V3 = {(1, 1), (2, 2), (3, 3)}, and
- V1 = {(1, 1)}, V3 = {(1, 1), (3, 3)}, and V2 = {(1, 1), (2, 2), (3, 3)}.

When V1, V2 and V3 are all different, everything appears as if the update snapshot() operations have
been executed sequentially (and consistently with their realtime occurrence order). When two of them are
equal, e.g., V1 = V2 = {(1, 1), (2, 2)} (second case), everything appears as if update snapshot1(1) and
update snapshot2(2) have been executed at the very same time, both before the update snapshot3() op-
eration. This possibility of simultaneity is the very essence of the “immediate” snapshot abstraction. It also
shows that an immediate snapshot object is not an atomic object.

Theorem 20 A one-shot immediate object satisfies the following property: if (i,−) ∈ Vj and (j,−) ∈ Vi,
then Vi = Vj .

Proof If (j,−) ∈ Vi (theorem assumption), we have Vj ⊆ Vi, due to the immediacy property. Similarly,
(i,−) ∈ Vj implies that Vi ⊆ Vj . It trivially follows that Vi = Vj when (j,−) ∈ Vi and (i,−) ∈ Vj .

✷Theorem 20

This theorem states that, while its operations appear as if they were executed instantaneously, an im-
mediate snapshot object is not an atomic object. This is because it is not always possible to totally order

94

all its operations. The immediacy property states that, from a logical time point of view, it is possible that
operations occur simultaneously (they then return the same result), making impossible to consider that one
occurred before the other. Differently from atomic snapshot objects, the specification of an immediate snap-
shot object allows for concurrent operations. It requires that these operations return the very same result.
Stated another way, this means that an immediate snapshot object has no sequential specification.

The participating set problem The participating set problem is a particular instance of the one-shot
immediate snapshot problem. It considers the case where the value vi deposited by a process pi is its
own identity. The corresponding operation is consequently denoted participate(). The properties a set Vi

returned by participate() are then:

• Self-inclusion. i ∈ Vi.

• Set inclusion. ∀i, j : Vi ⊆ Vj or Vj ⊆ Vi.

• Immediacy. ∀i, j : if j ∈ Vi then Vj ⊆ Vi.

9.1.2 A one-shot immediate snapshot construction

This section describes a very simple one-shot immediate snapshot algorithm based on an algorithm solving
the participating set problem. (The section that follows provides a solution to that problem.)

The algorithm is described in Figure 9.3. It uses an array REG [1 : n] of 1WMR atomic registers, and a
participating set object denoted PART . REG [i] is the register where pi deposits its value. Its initial value
is ⊥.

operation update snapshot(v) invoked by pi:
(1) REG [i]← v;
(2) present← PART .participate();
(3) result← ∅;
(4) for each j ∈ present do result← result ∪ {(j,REG[j])} end do;
(5) return (result)

Figure 9.3: Atomic snapshot object construction

Theorem 21 The algorithm described in Figure 9.3 is a bounded wait-free implementation of a one-shot
immediate snapshot object.

Proof Let us first observe that the algorithm is bounded wait-free as soon as the algorithm implementing
the underlying participating set object PART is bounded wait-free. We will see in Theorem 22 that there is
a bounded wait-free implementation of PART .

As a process pi that invokes update snapshot(v), first updates its register REG [i], and then invokes
PART .participate(), it follows that a participating process has always deposited a value. The rest of the
proof follows directly from the specification of the object PART . The set of process identities returned to pi
is the set from which it builds its result. As this set satisfies the self-inclusion, set inclusion and immediacy
properties associated with the object PART , the set of pairs computed satisfies the corresponding properties
of the one-shot immediate snapshot specification. ✷Theorem 21

95

9.1.3 A participating set algorithm

Underlying data structure A participating set algorithm is described in Figure 9.4. This algorithm uses
an array of 1WMR atomic registers LEVEL[1 : n], where LEVEL[i] can be written only by pi. A process pi
uses also a local array leveli[1 : n] to keep the last values it has (asynchronously) read from LEVEL[1 : n].
A register LEVEL[i] contains at most n distinct values (from n + 1 until 1), which means that it requires
b = ⌈log2(n)⌉ bits. It is initialized to n+ 1.

operation participate() invoked by pi:
% initially: ∀j : LEVEL[j] = n+ 1 %

(1) repeat LEVEL[i]← LEVEL[i]− 1;
(2) for each j ∈ {1, . . . , n} do leveli[j]← LEVEL[j] end do;
(3) seti ← {x | leveli[x] ≤ leveli[i]}
(4) until (|seti| ≥ leveli[i]);
(5) return (seti)

Figure 9.4: A participating set algorithm

Underlying principles of the algorithm let us consider the image of a stairway made up of n stairs.
Initially all the processes stand at the highest stair (i.e., the stair whose, number is n+1). (This is represented
in the algorithm by the initial values of the LEVEL array, namely, for any process pj , we have LEVEL[j] =
n+ 1.)

The algorithm is based on the following idea. When a process pi invokes participate(), it descends
along the stairway, going from the step LEVEL[i] to the step LEVEL[i]− 1 (line 1), until it attains a step k
such that there are k processes (including itself) stopped on the steps 1 to k . It then returns the identities of
these k processes.

To catch the underlying intuition and understand how this idea works, let us consider two extremal cases
in which k processes invoke the participate() operation.

• Sequential case.
In this case, the k processes invokes the operation sequentially, i.e., the next invocation starts only after
the previous one has returned. It is easy to see that the first process pi1 that invokes the participate()
operation proceeds from the step n + 1 until the step number 1, and stops at this step. Then, the
process pi2 starts and descends from the step n + 1 until the step number 2, etc., and the last process
pik stops at the step k.

Moreover, the set returned by pi1 is {i1}, the set returned by pi2 is {i1, i2}, etc., the set returned by
pik being {i1, i2, . . . , ik}. These sets trivially satisfy the inclusion property.

• Synchronous case.
In this case, the k processes proceed synchronously. They all, simultaneously, descend from the step
n+1 to the step n, and then from the step n to the step n−1, etc., and they all stop at the step number
k, as there are then k processes at the steps from 1 to k (they all are on the same kth step).

It follows that all the processes return the very same set of participating processes, namely, the set
including all of them {i1, i2, . . . , ik}.

Other cases, where the processes proceed asynchronously and some of them crash, can easily be designed.
The main question is now: how to make operational this idea? This is done by three statements (Figure

9.4). Let us consider a process pi:

96

• First, when it is standing on a given step LEVEL[i], pi reads the steps at which the other processes
are (line2). The aim of this asynchronous reading is to allow pi to compute an approximate global
state of the stairway. Let us notice that as a process pj can go only downstairs, leveli[j] is equal or
smaller to the step k = LEVEL[i] on which pj currently is. It follows that, despite the fact the global
state obtained by pi is approximate, seti can be safely used by pi.

• Then (line3), pi uses the approximate global state it has obtained, to compute a set seti of processes
that are standing at a step comprised between LEVEL][1] and LEVEL][i], the step where pi currently
is.

• Finally (line 4), if seti is contains k = LEVEL][i] or more processes, pi returns it as its result to the
participating set problem. Otherwise, it descends to the next stair LEVEL][i]− 1 (line 1).

Proof the algorithm Two preliminaries lemmas are proved before the main theorem.

Lemma 7 Let seti = {x | leveli[x] ≤ LEVEL[i]} (as computed at line 3). For any process pi, the predicate
|seti| ≤ LEVEL[i] is always satisfied at line 4.

Proof Let us first observe that leveli[i] and LEVEL[i] are always equal at lines 3 and 4. Moreover, any
LEVEL[j] register can only decrease, and for any (i, j) pair we have LEVEL[j] ≤ leveli[j].

The proof is by contradiction. Let us assume that there is at least one process pi such that |seti| =
|{x | leveli[x] ≤ LEVEL[i]}| > LEVEL[i]. Let k the current value of LEVEL[i] when this occurs.
|seti| > k and LEVEL[i] = k mean that at least k + 1 processes have progressed at least to the stair k.
Moreover, as any process pj descends one stair at a time (it proceeds from the stair LEVEL[j] to the stair
LEVEL[j] − 1 without skipping stairs), at least k + 1 processes have proceeded from the stair k + 1 to the
stair k.

Among the ≥ k+1 processes that are on stairs ≤ k, let pℓ be the last process that updated its LEVEL[ℓ]
register to k + 1 (due to the atomicity of the base registers, there is such a last process). When pℓ was
on the stair k + 1 (we then had LEVEL[ℓ] = k + 1), it obtained at line 3 a set setℓ such that |setℓ| =
|{x | levelℓ[x]| ≤ LEVEL[ℓ]} ≥ k+1 (this is because ≥ k+1 processes have proceeded to the stair k+1
and, as pℓ is the last of them, it has read a value ≤ k + 1 from its own LEVEL[ℓ] register and the ones of
those processes). As |setℓ| ≥ k + 1, pℓ stopped descending the stairway at line 4, at the stair k + 1. It then
returned, contradicting the initial assumption stating that it progresses until the stair k. ✷Lemma 7

Lemma 8 If pi halts at the stair k, we then have |seti| = k. Moreover, seti is composed of the processes
that are at a stair k′ ≤ k.

Proof Due to Lemma 7, we always have |seti| ≤ LEVEL[i], when pi executes line 4. If it stops, we also
have |seti| ≥ LEVEL[i] (test of line 4). It follows that |seti| = LEVEL[i]. Finally, if k is pi’s current stair,
we have LEVEL[i] = k (definition of LEVEL[i] and line 1). Hence, |seti| = k.

The fact that seti is composed of the identities of the processes that are at a stair ≤ k follows from the
very definition of seti (namely, seti = {x | leveli[x] ≤ LEVEL[i]}), the fact that, for any x, leveli[x] ≤
LEVEL[x], and the fact that a process never climbs the stairway (it either halts on a stair, line 4, or descends
to the next one, line 1). ✷Lemma 8

Theorem 22 The algorithm described in Figure 9.4 is a bounded wait-free implementation of a participat-
ing set object.

97

Proof Let us observe that (1) LEVEL[i] is monotonically decreasing, and (2), at any time, seti is such that
|seti| ≥ 1 (because it contains at least the identity i). It follows that the repeat loop always terminates (in
the worst case when LEVEL[i] = 1). It follows that the algorithm is wait-free. Moreover, pi executes the
repeat loop at most n times, and each computation inside the loop includes n read of atomic base registers.
It follows that O(n2) is an upper bound on the number of read/write operations on base registers involved
in a participate() operation. The algorithm is consequently bounded wait-free.

The self-inclusion property is a direct consequence of the way seti is computed (line 3): trivially, the
set {x | leveli[x] ≤ leveli[i]} contains always i.

For the set inclusion property, let us consider two processes pi and pj , that stop at stairs ki, and kj ,
respectively. Without loss of generality, let ki ≤ kj . Due to Lemma 8, there are exactly ki processes on
the stairs 1 to ki, and kj processes on the stairs 1 to kj ≤ ki. As no process backtracks on the stairway (a
process descends or stops), the set of kj processes returned by pj includes the set of k1 processes returned
by pi.

It follows from the lines 3 and 4 that, if a a process pj stops at a stair kj and then i ∈ setj , then pi
stopped at a stair ki ≤ kj . It follows from Lemma 8 that the set setj returned by pj includes the set seti
returned by pi, which proves the immediacy property. ✷Theorem 22

9.2 A connection between (one-shot) renaming and snapshot

9.2.1 A weakened version of the immediate snapshot problem

Let us consider a weakened version of the (one-shot) immediate snapshot problem without the immediacy
property. This means that, when a process pi invokes update snapshot(vi) it obtains a set Vi, and the sets
returned satisfy the following properties:

• Self-inclusion. (i, vi) ∈ Vi.

• Set inclusion. ∀i, j : Vi ⊆ Vj or Vj ⊆ Vi.

This section shows that a one-shot snapshot algorithm can be obtained from a simple modification of a
renaming algorithm.

9.2.2 The adapted algorithm

We consider here the renaming algorithm, based on reflector base objects, that has been described in chapter
7. The idea, to adapt it to solve the previous specification, comes from the following observation. In addition
to routing processes, reflectors can be used to help processes to collect their final view Vi.

Instead of being boolean atomic registers, the base atomic objects VISITED [0..1] contains now sets of
pairs (i, vi), i.e., they are views. They are initialized to ∅. (The meaning of VISITED[y] = ∅ is the same as
the meaning of ¬VISITED[y] in the base implementation of a reflector object.)

The operation reflect() is modified accordingly to take into account the computation of views. In ad-
dition to an entrance number (0 or 1), it takes a view V as additional parameter. Let us remind that (1) a
process that enters a reflector on the entrance labeled y, leaves it on an exit with the same label (upy or
downy), and (2) the network is designed in such a way that, for each reflector, each of its entrance is used
by at most one process.

The modified reflect(V, y) is as follows (Figure 9.5). The input parameter V is the current estimate of
the final view of the invoking process. Initially, V = {(i, vi)}. The aim of a reflect() invocation is to enrich

98

V in order it converges to a final value that satisfies self-inclusion and set inclusion. When a process enters
the reflector on the entrance y, it writes its current local view in VISITED[y], and then reads the other
register VISITED [1 − y]. If it empty, its local view V does not change, and the process exits on downy .
Otherwise the process adds the view in VISITED [1− y] to V and exits on upy.

function reflect (V, y):
(1) VISITED[y]← V ;
(2) if (VISITED[1− y] = ∅) then return (V, downy)
(3) else return (V ∪VISITED[1− y], upy) endif

Figure 9.5: Adapting the reflector base object

The algorithm that directs the progress of a process in the network of reflectors is exactly the same as
in the renaming algorithm. The only difference is in the returned value. Instead of a row number, the view
obtained after the process has visited its last reflector (that reflector belongs to the last column) is returned
as its final view to the invoking process. The corresponding update snapshot() operation is described
in Figure 9.6. Let us remind that the reflector object whose coordinates are (r, c) is denoted R[r, c]. The
algorithm can be trivially modified to solve both one-shot renaming and one-shot snapshot.

operation update snapshot (vi):
(1) Vi ← {(i, vi)}; ci ← idi; ri ← idi;
(2) while (ci = idi) do
(3) (Vi, exit)← R[ri, ci].reflect (Vi, 1);
(4) if (exit = up1) then ci ← ci + 1
(5) else ri ← ri − 1;
(6) if ri < −ci then ci ← ci + 1 endif
(7) endif
(8) endwhile;
(9) while (ci < N) do
(10) (Vi, exit)← R[ri, ci].reflect (Vi, 0);
(11) ci ← ci + 1;
(12) if (exit = up0) then ri ← ri + 1
(13) else ri ← ri − 1
(14) endif
(15) endwhile;
(16) return (Vi) % 0 ≤ ri +N ≤ 2(n− 1) %

Figure 9.6: From renaming to snapshot

Let us remind that the new name of a process in the original renaming algorithm is the row where it
attains the last column. It follows from that algorithm and the modified reflect() operation that, if two
processes pi and pj are such that the new name of pi is smaller than the new name of pj , we have Vi ⊆ Vj .
The self-inclusion property follows directly from the reflect() operation, as the set it returns always includes
its input parameter set, and the set Vi, whose final value it returned to pi, is initialized to {(i, vi)}.

9.3 Iterated immediate snapshot

We now consider iterated shared-memory models. In such models, processes communicate via a series
of shared memories M1, M2, A process proceeds in consecutive rounds 1, 2, . . ., and in each round

99

i it accesses memory Mi. In this section, we assume that every memory Mi is an instance of immediate
snapshot, and a process simply applies the update snapshot () operation to access it.

Iterated immediate snapshot memory (IIS) is of particular interest for us for two reasons. First, IIS
is, in a precise sense, equivalent to the conventional (non-iterated) read-write shared-memory model. Sec-
ond, it allows for a very simple geometric representation that enables a straightforward characterization of
computability.

9.3.1 IIS is equivalent to read-write

It is straightforward to implement IIS in the read-write shared memory model using the construction in
Section 9.1.1 for each Mi independently. On the other hand, IIS does not allow for implementing the
(persistent) read-write memory so that every live process is able to complete each of its operations. One
can see that by considering a run in which a live process pi is “left behind” in every IIS iteration so that
it never appears in the view of any other process. No write operation performed by pi in any read-write
implementation, based on IIS, of can then affect any read operation performed by another process. In other
words, no correct implementation can guarantee that pi completes any of its writes in that run.

However, as we will show now, IIS can implement read-write memory in a non-blocking way. Recall that
a non-blocking implementation guarantees that in an infinite execution at least one process makes progress,
i.e., either every operation invoked by a correct process returns or there is some process that completes
infinitely many operations.

We use IIS to implement the read-write model in which memory is organized as a vector of single-writer
multiple-reader registers, and every process alternates writes to its register with an atomic snapshot of the
memory. Furthermore, we assume that every process runs the full-information protocol: first it writes its
input value and in every subsequent iteration, it writes the outcome of its latest snapshot.

These assumptions do not bring loss of generality if we focus on solving distributed tasks: every read-
write algorithm can be seen as a restriction of this full-information protocol.

Thus, in the IIS model, we simulate a run of the full-information protocol where at least one correct
process manages to complete infinitely many write and snapshot operations. By simulating we mean here
producing outcomes of snapshot operations that could have been observed in some run of the read-write
model, where some process makes progress.

The implementation maintains, at every process pi, a local array ci[1, . . . , n], called a vector clock. Each
ci[j] has two components:

• ci[j].clock that tracks down the number of update operations of pi “witnessed” by pi so far, and

• ci[j].val that contains the most recent value of pj’s vector clock “witnessed” by pi so far.

Informally, the simulation, presented in Figure 9.7, proceeds as follows. To perform an update, pi
increments ci[i].clock and sets ci[i].clock to be the “most recent” vector clock observed so far. To take
a memory snapshot, pi goes through multiple iterations of IIS until the size of the “size” of the currently
observed vector clock |ci| =

∑
j ci[j].clock gets “large enough”. We explain what we mean by “most

recent” and “large enough” below.
In every round of our implementation, pi writes its current view of the memory and stores an update

of it in a local variable view = view [1], . . . , view [n] (line 3). Then for every process pj , pi computes the
position

k = argmax ℓview [ℓ][j].clock

100

and fetches view [k][j].val . The resulting vector of “most recent” values written by the processes is denoted
by top(view).

Then pi checks if |c| =
∑

j c[j].clock , the sum of clock values of all the processes equals the current
round number. Intuitively, it means that the currently simulated snapshot of pi will contain all the most
recent written values and will relate by containment to the results all other simulated snapshot operations.

Formally, every process pi goes through a number of phases, where phase k starts when pi’s local
variable ci[i].clock is assigned value k (in line 1 or line 11). Phase k ends when pi departs after executing
line 8 or is about to start phase k+1. The argument of the write operation of phase k is the value of c[i].val
initialized at the end of phase k − 1 in line 10 if k > 1 and the input value of pi otherwise. The outcome of
the snapshot operation of phase k is chosen to be the last value of c.val computed in the line 5 of the phase.

We claim that the simulated run is indistinguishable from a non-blocking run R of the full-information
protocol in the AS model: every process pi goes through the same sequence of simulated snapshot outcomes
as in R.

To justify our claim, we first prove a few auxiliary lemmas. Let viewr
i and cri denote the view and the

clock vector, resp., evaluated by process pi in round r, i.e., in lines 4 and 5, resp., of the rth iteration of the
algorithm. We say that cri ≤ crj if ∀k : cri [k].clock ≤ crj .clock , i.e., cri contains at least as recent perspective
on the simulated state as crj .

Lemma 9 For all r ∈ N, pi, pj ∈ Π, |cri | ≤ |crj | implies cri ≤ crj .

Proof By the Set Inclusion property of IS (see Section 9.1.1), the views evaluated by pi and pj in line 4 of
round r are related by containment, i.e., viewr

i ⊆ view r
j or view r

j ⊆ viewr
i . Since cri and crj are computed as

the vector of the most up-to-date values gathered from the views (line 5), we have cri ≤ crj or crj ≤ cri . Om
the other hand, since the operation |c| sums up the values of c[i].clock , cri ≤ crj implies |cri | ≤ |crj |. Thus,
|cri | ≤ |crj | indeed implies cri ≤ crj . ✷Lemma 9

Since, by Lemma 9, |cri | = |crj | implies |cri | ≤ |crj | and |cri | ≤ |crj |, we have:

Corollary 2 All processes that complete a snapshot operation in round r, evaluate the same clock vector c,
|c| = r.

Lemma 10 For all r ∈ N, pi ∈ Π, |cri | ≥ r.

Proof In round r = 1, every process pi that reaches By the Self-Inclusion property of IS, cr1[i].clock = 1,
and, thus, |cr1 ≥ 1. Suppose, inductively, that for all pi, |cri | ≥ r in some round r ≥ 1.

Since the view computed by pi in round r is written afterward to ISr+1, the values of |cri | do not decrease
with r. Thus, if |cri | > r, then |cr+1

i | ≥ |cri | ≥ r + 1. On the other hand, if |cri | = r, i.e., pi completes its
snapshot operation in round r, then pi increments ci[i].clock and we have |cr+1

i | > |cri |+1 ≥ r+1. In both
cases, |crr+1| ≥ r + 1 and the claim follows by induction. ✷Lemma 10

The values of cri .clock can only increase with r. Thus, by Lemmas 9 and 10, we have:

Corollary 3 If pi completes a snapshot operation in round r, then for all pj and r′ > r, we have cri ≤ cr
′

j .

Now we show that some correct process always makes progress in the simulated run. We say that a
process is terminated if it reached line 8. Note that if a process terminates in round r, it does not access any
ISr′ , for r′ > r.

101

Lemma 11 For all r ∈ N, if there is a correct non-terminated process reached round r, eventually some
correct non-terminating process completes its current phase.

Proof By contradiction, assume that there is an execution in which some correct non-terminated process is
in round r and no correct non-terminated process ever completes its current phase, i.e., no process pi ever
increases the value of ci[i].clock . Thus, there exists a clock vector c such that ∀r′ ≥ r, pi ∈ Π: cr′i = c.

By Lemma 10, for all pi and r′ ≥ r, |c| = |cri | ≥ r. Consider round r′ = |c| ≥ r. By the assumption,
every correct non-terminated process pi evaluates cr

′
i = c and, by the algorithm, terminates in round r′—a

contradiction. ✷Lemma 11

Now we are ready to prove correctness of our simulation.

Theorem 23 Every run R simulated by the algorithm in Figure 9.7 is indistinguishable from a run Rs of the
full information protocol in the AS model in which either every correct (in R) process terminates or some
correct process takes infinitely many steps.

Proof Given R, we construct Rs as follows. If pi completes its kth phase in r, let W k
i and Sk

i denote the
corresponding simulated update and snapshot operations. First we order all resulting Sk

i according to the
round numbers in which they were completed. Then we place each W k

i just before the first snapshot that
contains the kth simulated view of pi.

By Corollary 2, all snapshot outcomes produced in the same round are identical. Moreover, by Corol-
lary 3, snapshot outcomes grow with the round numbers. Thus, every two snapshot in the simulated run of
Rs are related by containment, every next one is a copy or a superset of the previous one in Rs. Furthermore,
the Self-Inclusion property of IS implies in our algorithm that every Sk

i contains the kth simulated view of
pi. Thus, in Rs, every pi executes the operations appear in the order they take place in R: W 1

i , S1
i , W 2

i , S2
i ,

. . . .
By construction, the outcome of every Sr

i contains the most recent written value for each process.
✷Theorem 23

Shared variables: IS memories IS1, IS2, . . .

Local variables at each pi: ci[1, . . . , n], initially [⊥, . . . ,⊥]

Code for process pi:
(1) r := 0; c[i].clock := 1; ci[i].val := input of pi; { memorize pi’s input }
(2) repeat forever
(3) r := r + 1
(4) view := ISr.update snapshot (c) { update the view }
(5) c := top(view) { update the clock vector with the most recent information }
(6) if |c| = r then { if the current snapshot is complete }
(7) if decided(c.val) then { if ready to decide }
(8) return decision(c.val)
(9) endif
(10) ci[i].val := c { compute the next value to write }
(11) ci[i].clock := ci[i].clock + 1 { update the local clock }
(12) endif
(13) end repeat

Figure 9.7: Implementing AS using IIS

102

Now suppose that a given distributed task is solvable in the AS model: in every run, every process
eventually reaches a decided state, captured in line 7 of our algorithm.

Assuming, without loss of generality, that a decided process simply stops taking steps, our non-blocking
solution brings the next correct process to the output, then the next one, etc., until every correct process
outputs. Note that there is no loss of generality in assuming that a process stops after producing an output,
since it juts corresponds to the execution in which the process crashes just after deciding.

Therefore, Theorem 23 implies that IIS is equivalent to AS (or, more generally the read-write model) in
terms of task solving:

Corollary 4 A task is solvable in IIS if and only if it is solvable in the read-write asynchronous model.

Note that in the above prove is that we do not use the Immediacy property of IS. Thus, the simulation
would still be correct even if we replace view := ISr.update snapshot (c) in line 4 with ASr.update(c); view :=
ASr.snapshot (c).

9.3.2 Geometric representation of IIS

The IIS model allows for a simple geometric representation. All possible runs of one round of IIS can be
represented as a standard chromatic subdivision of the (n− 1)-dimensional simplex.

The example depicted in Figure 9.8 describes the views obtained by three processes, p1, p2, and p3, after
each executes For example, the blue corner of the triangle models the view of p1 in a run where it only sees
itself. The internal points on the blue-green face model the views of p1 and p2 in runs where they see each
other but miss p3. Finally, the internal points of the triangle model the views of the processes in which they
see all three. A triangle in the subdivision models the set of views that can be obtained in the same run.

As we can see, the resulting views and runs result in a nice simplicial complex that is simply a subdivision
of the triangle corresponding to the initial state of the system. Multiple rounds of the IIS model can thus be
represented as an iterated standard chromatic subdivision, where each of the triangles is subdivided, then
each of the resulting triangles is subdivided, etc.

(p1), (p2, p3)

p1 p2

p3

Figure 9.8: One round of 3-process IIS as a standard chromatic subdivision of a chromatic 2-simplex: blue
vertices model the possible resulting states of p1, green–p2, and red–p3; check the run in which p1 only sees
itself

Notice that one round of the (full-information) AS model produces runs that do not fit the subdivision
depicted in Figure 9.8. For example, the AS model allows a run in which p1 only sees itself and p2, but
both p2 and p3 see all three processes. In Figure 9.8 this runs corresponds to the triangle formed by the blue
vertex on the face (p1, p2) and the green and read vertices in the interior that overlaps with other triangles
in the subdivision. But since this run does not satisfy the Immediacy property of IS, it is excluded by the IS
model.

103

The fact that one round of the IS model is captured by the subdivision depicted in Figure 9.8 is obvious
for three processes. More generally, to model runs of the IIS model in a system of n processes, consider the
initial system state s represented as (n − 1)-dimensional chromatic simplex s, i.e., a set of n vertices, each
vertex corresponding to a distinct process. Chrs is now defined inductively on the dimension of s.

If s is zero dimensional, which corresponds to a system of only one process, we let Chrs = s. Suppose
now, inductively, that s has dimension n − 1, and that we already took the chromatic subdivision of its
(n − 2)-skeleton, i.e., all subsets of size at most n − 1. Take a new (n − 1)-simplex s′. For each face t of
s, let t̄′ be the complementary face of s′, that is, the face of s′ corresponding to the processes that do not
appear in t. Then every simplex consisting of the vertices t̄′ and the vertices of any simplex in the chromatic
subdivision of t is added to the resulting simplicial complex Chrs. If we iterate this construction k times
we obtain the kth chromatic subdivision, ChrkC .

That Chrs is indeed a subdivided simplex was independently shown by Linial [66] and Kozlov [60]. As
we will see later in this book, this fact will be useful in deriving fundamental computability and impossibility
results.

Bibliographic notes

Afek et al. JACM

Aguilera 04

Attiya-Fouren

Borowsky-Gafni 93

Masuzawa 94, MWMR and O(n)

Gafni and Rajsbaum, OPODIS 2010

Exercises

One-shot snapshot from renaming (attiya)

104

Part IV

Consensus objects

105

Chapter 10

Consensus and universal construction

In the first part of this book, we considered multiple powerful abstractions that can be wait-free implemented
using read-write registers. A natural question: can any object type be implemented this way? We show in
this chapter that the answer is no: for example, a queue cannot be wait-free implemented even when shared
by two processes. More generally, we address the following fundamental question:

Given object types T and T ′, is there a wait-free implementation of an object of type T from
objects of type T ′?

Recall that an object operation can be either total or partial (Section 2.2.2). A pending partial operation
may not always be able to complete. Indeed, there are executions in which the partial operation cannot be
linearized, and, thus, it must be forced to wait until the value of the object allows it to proceed. In contrast
(Chapter 2.5), a pending total operation can always be completed by a process, regardless the behavior of
the other processes. Thus, only total operations can be wait-free implemented. In this chapter we assume
total object types.

10.1 What cannot be read-write implemented

To warm up, let us consider a queue object type that exports two operations enqueue() and dequeue(). In a
sequential execution, enqueue(v) adds v to the end of the queue and dequeue() returns the first element in
the queue and removes it from the queue. If the queue is empty the default value ⊥ is returned.

10.1.1 The case of one dequeuer

Let us assume only one process is allowed to invoke dequeue() on the concurrent implementation of the
queue. Such a restricted queue allows for a simple read-write wait-free implementation.

Each enqueuer pi maintains a register Ri which stores the sequence of values enqueued by pi so far,
each value equipped with a “timestamp.” Each time pi enqueues a value, it scans all the registers to find a
the highest timestamp t used so far and updates Ri equipped with timestamp t + 1. The dequeuer simply
reads all registers Ri and returns the value with the lowest timestamp that was not previously returned (ties
broken arbitrarily, e.g., by picking the value enqueued by the enqueuer with the lowest id).

107

operation propose(v):
if (x = ⊥) then x := v endif;
return (x).

Figure 10.1: Consensus specification: sequential execution of popose(v)

Intuitively, the implementation is correct since we only need to break the ties for values that were concur-
rently enqueued and thus can be linearized either way. We encourage the reader to find a formal correctness
argument.

[[PK exercise: prove that it is correct?]]

10.1.2 Two or more dequeuers

What about a general queue, shared by two or more processes, where every process is allowed to enqueue
or dequeue elements? We show below that this

Schedules, configurations and values go here

Lemma 12 Every queue implementation has a bivalent configuration.

Lemma 13 Every queue implementation has a critical configuration.

Theorem 24 There is no wait-free two-process queue implementation from atomic registers.

Proof
✷Theorem ??

Since any n-process wait-free implementation (n ≥ 2) implies a 2-process wait-free implementation,
we have:

Corollary 5 For any n ≥ 2, there is no wait-free n-process queue implementation from atomic registers.

10.2 Universal objects and consensus

An object type T is universal if, given any (total) type T , an object of type T ′ can be wait-free implemented
from objects of type T , together with atomic registers. An algorithm providing such an implementation is
called a universal construction.

In this chapter, we introduce consensus as an example of a universal object type. We present two
consensus-based universal constructions. The first is wait-free, the second one is bounded wait-free. (Recall
that an implementation is bounded wait-free if there is a bound on the number of base-object steps an
operation must perform to terminate.)

The consensus object type exports an operation propose() that takes one input parameter v in a value
set V (|V | ≥ 2) and returns a value in V . Let ⊥ denote a default value that cannot be proposed by a process
(⊥ /∈ V). Then V ∪{v}is the set of states a consensus object can take, ⊥ is its initial state, and its sequential
specification is defined in Figure 10.1. A consensus objects can thus be seen as a “write-once” register
that keeps forever the value proposed by the first propose() operation. Then, any subsequent propose()
operation returns the first written value.

108

Given a linearizable implementation of the consensus object type, we say that a process proposes v if
it invokes propose(v) (we then say that it is a participant in consensus). If the invocation of propose(v)
returns a value v′, we say that the invoking process decides v′, or v′ is decided by the consensus object.
We observe now that any execution of a wait-free linearizable implementation of the consensus object type
satisfies three properties:

• Agreement: no two processes decide different values.

• Validity: every decided value was previously proposed.

Indeed, otherwise, there would be no way to linearize the execution with respect to the sequential
specification in Figure 10.1 which only allows to decide on the first proposed value.

• Termination: Every correct process eventually decides.

This property is implied by wait-freedom: every process taking sufficiently many steps of the consen-
sus implementation must decide.

10.3 A wait-free universal construction

In this section, we show that if, in a system of n processes, we can wait-free implement consensus, then we
can implement any total object type.

Recall that a total object type can be represented as a tuple (Q, q0, O,R, δ), where Q is a set of states,
q0 ∈ Q is an initial state, O is a set of operations, R is a set of responses, and δ is a binary relation on
O ×Q×R×Q, total on O ×Q: (o, q, r, q′) ∈ δ if operation o is applied when the object’s state is q, then
the object can return r and change its state to q′. Note that for non-deterministic object types, there can be
multiple such pairs (r, q′) for given o and q.

The goal of our universal construction is, given an object type τ = (Q,O,R, δ), to provide a wait-free
linearizable implementation of τ using read-write registers and atomic consensus objects.

10.3.1 Deterministic objects

For deterministic object types, δ can be seen as a function O × Q → R × Q that associates each state an
operation with a unique response and a unique resulting state. The state of a deterministic object is thus
determined by a sequence of operations applied to the initial state of the object. The universal construction
of an object of deterministic is presented in Figure 10.2.

Correctness.

Lemma 14 At all times, for all processes pi and pj , linearized i and linearized j are related by containment.

Proof We observe that linearized i is constructed by adding the batches of requests decided by consensus
objects C1, C2, . . ., in that order. The agreement property of consensus (applied to each of these consensus
objects) implies that, for each j, either linearized i is a prefix of linearized i or vice versa. ✷Lemma 14

Lemma 15 Every operation returns in a finite number of its steps.

109

Shared objects:
R, store-collect object, initially ⊥
C1, C2, . . . , consensus objects

Local variables, for each process pi:
integer seqi, initially 0 { the number of executed requests of pi }
integer ki, initially 0 { the number of batches of executed requests }
sequence linearized i, initially empty { the sequence of executed requests }

Code for operation op executed by pi:
7 seqi := seq i + 1
8 R.store(op, i, seq i) { publish the request }
9 repeat
10 V := R.collect() { collect all current requests }
11 requests := V − {linearized i} { choose not yet linearized requests }
12 ki := ki + 1
13 decided := C[k].propose(requests)
14 linearized i := linearized i.decided { append decided requests }
15 until (op, i, seq i) ∈ linearized i

16 return the result of (op, i, seqi) in linearized i using δ and q0

Figure 10.2: Universal construction for deterministic objects

Proof Suppose, by contradiction, that a process pi invokes an operation op and executes infinitely many
steps without returning. By the algorithm, pi forever blocks in the repeat-until clause in lines 20-15. Thus,
pi proposes batches of requests containing its request (op, i, seq i) to an infinite sequence of consensus
instances C1, . . . but the decided batches never contain (op, i, seq i). By validity of consensus, there exists
a process pj ̸= pi that accesses infinitely many consensus objects. By the algorithm, before proposing a
batch to a consensus object, pj first collects the batches currently stored by other processes in a store-collect
object R. Since pi stores its request in R and never updates it since that, eventually, every such process pj
must collect the pi’s request and propose it to the next consensus object. Thus, every value returned by the
consensus objects from some point on must contain the pi’s request—a contradiction. ✷Lemma 15

Theorem 25 For each type τ = (Q, q0, O,R, δ), the algorithm in Figure 10.2 describes a wait-free lin-
earizable implementation of τ using consensus objects and atomic registers.

Proof Let H be the history an execution of the algotihm in Figure 10.2. By Lemma 14, local variables
linearized i are prefixes of some sequence of requests linearized . Let L be the legal sequential history,
where operations and are ordered by linearized and responses are computed using q0 and δ. We construct
H ′, a completion of H , by adding responses to the incomplete operations in H that are present in L. By
construction, L agrees with the local history of H ′ for each process.

Now we show that L respects the real-time order of H . Consider any two operations op and op′ such
that op →H op′ and suppose, by contradiction that op′ →L op. Let (op, i, si) and (op′, j, sj) be the
corresponding requests issued by the processes invoking op and op′, respectively. Thus, in linearized ,
(op′, j, sj) appears before (op, i, si), i.e., before op terminates it witnesses (op′, j, sj) being decided by
consensus objects C1, C2, . . . before (op′, j, sj). But, by our assumption, op →H op′ and, thus, (op′, j, sj)
has been stored in the store-collect object R after op has returned. But the validity property of consensus

110

Shared objects:
R, store-collect object, initially ⊥ { published requests }
C1, C2, . . . , consensus objects
S, store-collect object, initially (1, ϵ) { the current consensus object and the last committed sequence of requests }

Local variables, for each process pi:
integer seqi, initially 0 { the number of executed requests of pi }
integer ki, initially 0 { the number of batches of executed requests }
sequence linearized i, initially ϵ { the sequence of executed requests }

Code for operation op executed by pi:
17 seqi := seq i + 1
18 R.store(op, i, seq i) { publish the request }
19 (ki, linearized i) := max(S.collect()) { get the current consensus object and the most recent state }
20 repeat
21 V := R.collect() { collect all current requests }
22 requests := V − {linearized i} { choose not yet linearized requests }
23 ki := ki + 1
24 decided := C[k].propose(requests)
25 linearized i := linearized i.decided { append decided requests }
26 until (op, i, seq i) ∈ linearized i

27 S.store((ki + 1, linearized i)) { publish the current consensus object and state }
28 return the result of (op, i, seqi) in linearized i using δ and q0

Figure 10.3: Bounded wait-free universal construction for deterministic objects

does not allow to decide a value that has not yet been proposed—a contradiction. Thus, op→L op′, and we
conclude that H is linearizable. ✷Theorem 25

10.3.2 Bounded wait-free universal construction

The implementation described in Figure 10.2 is wait-free but not bounded wait-free. A process may take
arbitrarily many steps in the repeat-until clause in lines 20-15 to “catch up” with the current consensus
object.

It is straightforward to turn this implementation into a bounded wait-free. Before returning an opera-
tion’s response (line 16), a process posts in the shared memory the sequence of requests it has witnessed
committed together with the id of the last consensus object it has accessed. On invoking an operation, a pro-
cess reads the memory to get the “most recent” state on the implemented object and the “current” consensus
id. Note that multiple processes concurrently invoking different operations might get the same estimate of
the “current state” of the implementation. In this case only one of them may “win” in the current consensus
instance and execute its request. But we argue that the requests of “lost” processes must be then committed
by the next consensus object, which implies that every operation returns in a bounded number of its own
steps. The bound here depends on the implementation of

The resulting implementation is presented in Figure 10.3.
To prove the following theorem, we assume that it takes O(n) read-write steps to implement store-collect

objects R and S (Chapter ??).

111

Theorem 26 For each type τ = (Q, q0, O,R, δ), the algorithm in Figure 10.3 describes a wait-free lin-
earizable implementation of τ using consensus objects and atomic registers, where every operation returns
in O(n).

Proof The proof of linearizability is similar to the one in the proof of Theorem 25.
To prove bounded wait-freedom, consider a request (op, i, ℓ) issued by a process pi. By the algorithm, pi

first publishes its request and obtains the current state of the implemented object (line 19), denoted k and s,
respectively. Then pi proposes all requests it observes proposed but not yet committed to consensus object
Ck. If (op, i, ℓ) is committed by Ck, then pi returns after taking O(n) read-write steps (we assume that both
collect operations involve O(n) read-write steps).

Suppose now that (op, i, ℓ) is not committed by Ck. Thus, another process pj has previously proposed to
Ck a set of requests that did not include (op, i, ℓ). Thus, pj collected requests in line 21 before pi published
(op, i, ℓ) in line 18.

[[PK: to complete]]
✷Theorem 26

10.3.3 Non-deterministic objects

The universal construction in Figure 10.2 assumes the object type is deterministic, where for each state and
each operation there exists exactly one resulting state and response pair. Thus, given a sequence of request,
there is exactly one corresponding sequence of responses and state transitions.

A “dumb” way to use our universal construction is to consider any deterministic restriction of the given
object type. But this may not be desirable if we expect the shared object to behave probabilistically (e.g.,
in randomized algorithms). A “fair” non-deterministic universal construction can be derived from the al-
gorithm in Figure 10.3 as follows. Instead of only proposing a sequence of requests in line 24, process
pi (non-deterministically) picks a sequence of possible responses and state transitions assuming that the
sequence of operations in requests is applied to the last state in linearized i.

[[PK: to complete]]

10.4 Bibliographic notes

Herlihy 1991

Attiya-Welch 1998

State machine replication: Lamport, Schneider

Chandra-Toueg total order broadcast from consensus

Guerraoui-Raynal 2004: tech report on FT atomic objects

112

Chapter 11

Consensus number and the consensus
hierarchy

In the previous chapter, we introduced a notion of a universal object type. Using read-write registers and
objects of a universal type and, one can wait-free implement an object of any total type. One example of a
universal type is consensus. Therefore, the following question is fundamental:

Which object types allow for a wait-free implemention of consensus?

For example, do atomic registers can implement consensus on their own? If not, what about queues and
registers? In this chapter, we address this question by introducing the notion of consensus number of an
object type T , the largest number of processes for which T is universal. Consensus number is fundamental
in capturing the relative power of object types, we show how to evaluate the consensus power of various
object types.

11.1 Consensus number

The consensus number of an object type T , denoted by CN (T), is the largest number n such that it is
possible to wait-free implement a consensus object from atomic registers and objects of type T , in a system
of n processes. If there is no such largest n, i.e, consensus can be implemented in a system of arbitrary
number of processes, the consensus number of T is said to be infinite.

Note that if there exists a wait-free implementation in a system of n implies a wait-free implementation
in a system of any n′ < n processes. Thus, that the notion of consensus number is well-defined. By the
definition, if CN (T) < CN (T ′), then there is no wait-free implementation of an object of type T ′ from
objects of type T and registers in a system of CN (T) + 1 or more processes.

What if atomic registers are strong enough to wait-free implement consensus for any number of pro-
cesses, i.e., CN (regiter) =∞? Then all object types would have the same consensus number, and the very
notion of consensus number would be useless. We show in this chapter that this is not the case. Moreover,
we show that for each n, there exists object types T , such that CN (T) = n, i.e., the consensus hierarchy is
populated for each level n.

113

11.2 Preliminary definitions

In this section, we introduce some machinery that facilitates computing consensus numbers of various object
types. This includes the notions of a schedule, a configuration, and valence.

11.2.1 Schedule, configuration and valence

This section defines news notions (schedule, configuration and valence) that are central to prove the im-
possibility to wait-free implement a consensus object from some “base” object types. Before giving these
definitions, it also reminds a few notions and results introduced in the first chapter, that are useful to better
understand results presented in this chapter.

Reminder Let us consider an execution made up of sequential processes that invoke operations on atomic
objects of types T1, . . . , Tx. These objects are called “base objects” (equivalently, the types T1, . . . , Tx are
called “base types”). We have seen in the first chapter (theorem 1), that, as each base object is atomic,
that execution can be modeled, at the operation level, by an atomic history Ŝ on the operations issued
by the processes. This means that Ŝ is a sequential history that (1) includes all the operations issued by
the processes (except possibly the last operation of a process if that process crashes), (2) is legal, and (3)
respects the real time occurrence order on the operations. As we have seen, such a history Ŝ is also called a
linearization.

Schedules and configurations A schedule is a sequence of operations issued by processes. Sometimes an
operation is represented in a schedule only by the name of the process that issues that operation.

A configuration C is a global state of the system execution at a given point in time. It includes the value
of each base object plus the local state of each process. The configuration p(C) denotes the configuration
obtained from C by applying an operation issued by the process p. More generally, given a schedule S and
a configuration C , S(C) denotes the configuration obtained by applying to C the sequence of operations
defining S.

Valence The valence notion is a fundamental concept to prove consensus impossibility results. Let us
consider a consensus object such that only the values 0 and 1 can be proposed by the processes. Such an
object is called a binary consensus object. Let us assume that there is an algorithm A implementing such
a consensus object from base type objects. Let C be a configuration attained during an execution of the
algorithm A.

The configuration C is v-valent, if from C , no matter the schedule it applies to C , the algorithm always
leads to v as the decided value; v is the valence of that configuration. If v = 0 (resp., v = 1) C is said to be
0-valent (resp., 1-valent) and 0 (resp., 1). A 0-valent or 1-valent configuration is said to be monovalent. A
configuration that is not monovalent is said to be bivalent.

While a monovalent configuration states that the decided value is determined (be processes aware of it
or not), the decided value is not yet determined in a bivalent configuration.

11.2.2 Bivalent initial configuration

The next theorem shows that, for any wait-free consensus algorithm A, there is at least one initial bivalent
configuration, i.e., a configuration in which the decided value is not predetermined: any one from several

114

proposed value can still be decided (for each of these values v, there is a schedule generated by the algorithm
A that, starting from that configuration, decides v).

This means that, while the decided value is only determined from the inputs when the initial config-
uration is univalent, this is not always true for all configurations, as there is at least one initial bivalent
configuration. The value decided by a wait-free consensus algorithm cannot always be deterministically
determined from the inputs. It can also depend on the execution of the algorithm A itself.

Theorem 27 Let us assume that there is an algorithm A that wait-free implements a consensus object in a
system of n processes. There is then a bivalent initial configuration.

Proof Let C0 be the initial configuration in which all the processes propose 0 to the consensus object, and
Ci, 1 ≤ i ≤ n, the initial configuration in which the processes from p1 to pi propose the value 1, while
all the other processes propose 1. So, all the processes propose 1 in Cn. These configurations constitute
a sequence in which any two adjacent configurations Ci−1 and Ci, 1 ≤ i ≤ n, differ only in the value
proposed by the process pi: it proposes the value 0 in Ci−1 and the value 1 in Ci. Moreover, it follows from
the validity property of the consensus algorithm A, that C0 is 0-valent, while Cn is 1-valent.

Let us assume that all the previous configurations are univalent. It follows that, in the previous sequence,
there is (at least) one pair of consecutive configurations, say Ci−1 and Ci, such that Ci−1 is 0-valent and Ci

is 1-valent. We show a contradiction.
Assuming that no process crashes, let us consider an execution history Ĥ of the algorithm A that starts

from the configuration Ci−1, in which the process pi executes no operation for an arbitrarily long period
(the end of that period is defined below). As the algorithm is wait-free, all the processes decide after a finite
number of their operations. The sequence of operations that starts at the very beginning of the history and
ends when all the processes have decided (but pi, which has not yet executed an operation), defines the
schedule S. (See the upper part of Figure 11.1. Within the vector of the values proposed by the processes,
the value proposed by pi has been placed inside a box.) Then, after S terminates, pi starts executing and
eventually decides. As Ci−1 is 0-valent, S(Ci−1) is also 0-valent.

[1, . . . , 1, 0 , 0, . . . , 0]
Ci−1 is 0-valent Schedule S (no operation by pi)

[1, . . . , 1, 1 , 0, . . . , 0]
Schedule S (no operation by pi)

S(Ci−1): 0-valent

Ci is 1-valent
S(Ci): 0-valent

Figure 11.1: There is a bivalent initial configuration

Let us observe (lower part of Figure 11.1) that the same schedule S can be produced by the algorithm
A from the configuration Ci. This is because (1) the configurations Ci−1 and Ci differ only in the value
proposed by pi, and, (2) as pi executes no operation in S, that schedule cannot depend on the value proposed
by pi. It follows that, as S(Ci−1) is 0-valent, the configuration S(Ci) is also 0-valent. But as, on another
side, Ci is 1-valent, we conclude that S(Ci) is 1-valent, a contradiction. ✷Theorem 27

Crash vs asynchrony The previous proof is based on (1) the assumption stating that the consensus al-
gorithm A is wait-free (intuitively, the progress of a process does not depend on the “speed” of the other

115

processes), and (2) asynchrony (a process progresses at its “own speed”). This allows the proof to play with
process speed, and consider a schedule (part of an execution history) in which a process pi does not execute
operations. We could have instead considered that pi has initially crashed (i.e., pi crashes before executing
any operation). During the schedule S, the wait-free consensus algorithm A (the existence of which is a
theorem assumption) has no way to know in which case the system really is (has pi initially crashed or is it
only very slow?). This shows that, for some problems, asynchrony and process crashes are two facets of the
same “uncertainty” wait-free algorithms have to cope with.

11.3 The weak wait-free power of atomic registers

We have seen in the second part of this book that atomic registers allows wait-free implementing atomic
counters and atomic snapshot objects. As atomic registers are very basic objects, an important question
from a computability point of view, is then: can atomic registers wait-free implement objects such as a
queue or a stack shared by concurrent processes. This section shows that the answer to this question is “no”.

More precisely, this section shows that MWMR atomic registers are not powerful enough to wait-free
implement a consensus object in a system of two processes. This means that the consensus number of the
type “atomic register” is 1, which means that atomic registers allow wait-free implementing consensus in a
system made up of a single process! Stated another way, atomic registers have the “poorest” power when
one is interested in wait-free implementations of atomic objects in systems of asynchronous processes prone
to process crashes.

11.3.1 The consensus number of atomic registers is 1

To show that there is no algorithm that wait-free implements a consensus object in a system of two processes
p and q, the proof assumes such an algorithm and derives a contradiction. The concept central in that proof
is the notion of valence previously introduced.

Theorem 28 There is no an algorithm A that wait-free implements a consensus object from atomic registers
in a set of two processes (i.e., the consensus number of atomic registers is 1.)

Proof Let us assume (by contradiction) that there is an atomic register-based algorithm A that wait-free
implements a consensus object in a set of two processes. Due to theorem 27, there is an initial bivalent
configuration. The proof of the theorem consists in showing that, starting from a bivalent configuration
C , there is always an arbitrarily long schedule S produced by A that leads from C to another bivalent
configuration S(C). It follows that A has a run in which no process ever decides, which proves the theorem.

Given a configuration D, let us remind that p(D) is the configuration obtained by applying the next
operation of the process p -as defined by the algorithm A- to the configuration D. Let us also remind that
the operations p or q can issue are reading or writing a base atomic register.

Let us assume that, starting the algorithm from the bivalent configuration C , there is a maximal schedule
S such that D = S(C) is bivalent. “Maximal” means that both the configuration p(D) and the configuration
q(D) are monovalent, and have different valence (otherwise, D would not be bivalent). Without loss of
generality, let us consider that p(D) is 0-valent, while q(D) is 1-valent.

The operation that leads from D to p(D) is a read or a write by p of a base register R1. Similarly, the
operation that leads from D to q(D) is a read or a write by q of a base register R2. The proof consists in a
case analysis.

116

1. R1 and R2 are distinct registers (Figure 11.2).
In that case, whatever are the (read or write) operations OP1() and OP2() issued by p and q on the
base registers R1 and R2, as the processes access different registers, the configurations p(q(D)) and
q(p(D)) are the same configuration, i.e., p(q(D)) ≡ q(p(D)).

R2.OP2() by qR1.OP1() by p

Bivalent configuration D

0-valent configuration p(D) 1-valent configuration q(D)

R1.OP1() by pR2.OP2() by q

Configuration q(p(D)) ≡ p(q(D))

Figure 11.2: Operations issued on distinct registers

As q(D) is 1-valent, it follows that p(q(D)) is also 1-valent. Similarly, as p(D) is 0-valent, it follows
that q(p(D)) is also 0-valent. A contradiction, as the configuration p(q(D)) ≡ q(p(D)) cannot be
both 0-valent and 1-valent.

2. R1 and R2 are the same register R.

• Both p and q read R.
As a read operation on an atomic register does modify its value, this case is the same as the
previous one where p and q access distinct registers.

• p reads R, while q writes R (Figure 11.3).
(Let us notice that the case where q reads R, while p writes R is similar.) Let Readp be the read
operation issued by p on R, and Writeq be the write operation issued by q on R. As Readp(D)
is 0-valent, so is Writeq(Readp(D)). Moreover, Writeq(D) is 1-valent.
The configurations D and Readp(D) differ only in the local state of p (it has read R in Readp(D),
while it has not in D). These two configurations cannot be distinguished by q. Let us consider
the following two executions:

– After the configuration D has been attained by the algorithm A, p stops executing for an
arbitrarily long period, and during that period only q executes operations. As by assumption
the algorithm A is wait-free, there is a finite sequence of operations issued by q at the end
of which q decides. Let S′ be the schedule made up of these operations. As Writeq(D) is
1-valent, it decides 1. (Thereafter, p wakes up and executes operations as specified in the
the algorithm A. Alternatively, p could crash after the configuration D has been attained.)

– Similarly, after the configuration Readp(D) has been attained by the algorithm A, p stops
executing for an arbitrarily long period The same schedule S′ (defined in the previous item)
can be issued by q after the configuration Readp(D). This is because, as p issues no oper-
ation, q cannot distinguish D from Readp(D). It follows that, q decides at the end of that
schedule, and, as Writeq(Readp(D)) is 0-valent, q decides 0.

117

D

W riteq(D) (1-valent)Readp(D) (0-valent)

Writeq(Readp(D))

Schedule S ′ (only operations by q)

Schedule S ′

q decides

q decides

Figure 11.3: Read and write issued on the same register

But, while executing the schedule S′, q cannot know which (D or Readp(D)) was the configu-
ration when it started executing S′ (this is because, these configurations differ only in a read of
R by p). As the schedule S′ is deterministic (it is composed only of read and write operations
issued by q on base atomic registers), q must decide the same value, whatever the configuration
at the beginning of S′. A contradiction as it decides 0 in the first case and 1 in the second case.

• Both p and q write the same register R.
Let Writep and Writeq be the write operations issued by p and q on R, respectively. By assump-
tion the configurations Writep(D) and Writeq(D) are is 0-valent and 1-valent, respectively.
The configurations Writeq(Writep(D)) and Writeq(D) cannot be distinguished by q: the write
of R by p in the configuration D that produces the configuration Writep(D) is overwritten by q
when it produces the configuration Writeq(Writep(D)).
The reasoning is then the same as in the previous item. It follows that, if q executes alone from
D until it decides, it decides 1 after executing a schedule S′′. The same schedule from the
configuration Writep(D) leads to decide 0. But, as q cannot distinguish D from Writep(D),
and S′′ is deterministic, it follows that it has to decide the same value in both executions, a
contradiction as it decides 0 in the first case and 1 in the second case. (Let us observe that
Figure 11.3 is still valid. We have only to replace Readp (D) and S′ by Writep(D) and S′′,
respectively.)

✷Theorem 28

11.3.2 The wait-free limit of atomic registers

Theorem 29 It is impossible to wait-free implement any object with consensus number greater than 1 from
atomic registers.

Proof The proof is an immediate consequence of theorem 28 (the consensus number of atomic registers is
1), and theorem ?? (if CN (X) < CN (Y), X does allow wait-free implementing Y in a system or more
than |CN (X)| processes). ✷Theorem 29

118

11.3.3 Another limit of atomic registers

Naming the anonymous

11.4 Objects whose consensus number is 2

As atomic registers are too weak to wait-free implement a consensus object for two processes, the question
posed at the beginning of the chapter becomes: are they objects that allow wait-free implementing a consen-
sus object for two or more processes. This section first considers three base objects (test&set objects, queue,
and swap objects) and show that they can wait-free implement consensus in a set of two processes denoted
p0 and p1 (considering the process indices 0 and 1 makes the presentation simpler). It then shows that they
cannot wait-free implement consensus in a set of three or more processes.

11.4.1 Consensus from a test&set objects

Test&set objects A test&set object is an atomic object that provides the processes with a single operation
(called test&set, hence the name of the object). Such an object can be seen as maintaining an internal state
variable x that can contain the value 0 or 1. It is initialized to 0 and can be accessed by the operation
test&set(). Assuming only one operation at a time is executed, its sequential specification is defined as
follows:

operation test&set ():
prev val ← x;
if (prev val = 0) then x← 1 endif;
return (prev val).

From test&set objects to consensus The algorithm described in Figure 11.4 constructs a consensus object
for two processes from a test&set object TS . It uses two additional 1W1R atomic registers REG[0] and
REG[1] (a process pi can always keep a local copy of the atomic register it writes, so we do not count it as
one of its readers). The construction is made up of two parts:

• When the process pi invokes propose(v) on the consensus object, it deposits the value it proposes
into REG [i] (line 1). This part consists for pi in making public the value it proposes.

• Then pi executes a control part to know which value has to be decided. To that aim, it uses the
test&set object (line 2). If it obtains the initial value of the test&set object (0), it decides the value it
has proposed (line 3); otherwise it decides the value proposed by the other process p1−i(line 4).

In the following, we call winner the process that is the first to execute line 2. More precisely, as the
test&set object is atomic, the winner is the process whose TS .test&set() operation is the first to appear
in the linearization order associated with the object TS . The proof shows that the value decided by the
consensus object is the value deposited by the winner pj in its register REG [j].

Theorem 30 The algorithm described in Figure 11.4 is a wait-free construction of a consensus object from
a test&set object, in a system of two processes.

119

operation propose(v) issued by pi:
(1) REG[i]← v;
(2) aux← TS .test&set ();
(3) case (aux = 0) then return (REG[i])
(4) (aux = 1) then return (REG[1− i])
(5) endcase

Figure 11.4: From test&set to consensus

Proof The algorithm is clearly wait-free. Let pj be the winner. Let us observe that it deposits the value v
it proposes in REG [j] before invoking TS .test&set() (this follows from the fact that, as both REG [j] and
TS are atomic, an execution that involves both of them is also atomic, and consequently the linearization
order -with which we reason- respects process order). When the winner pj executes line 2, the test&set
object TS changes its value from 0 to 1, and then, as any other invocation finds TS = 1, the test&set object
keeps forever the value 1. As pj is the only process that obtains the value 0 from the object TS , it decides the
value v it has just deposited in REG [j] (line 3). Moreover, as the other process obtains the value 1 from TS ,
that process does not decide the value it proposes but the other proposed value, namely, the value deposited
REG [j] by the winner pj (line 4). It follows that a single value is decided, and that value has been proposed
by a process. Consequently, the algorithm described in Figure 11.4 is wait-free wait-free implementation of
a consensus object in a system of two processes. ✷Theorem 30

11.4.2 Consensus from queue objects

Queue objects These objects have been already used in several chapters. A queue is defined by two total
operations with a sequential specification. The enqueue operation adds an item at the end of the queue. The
dequeue operation removes the item at the head of the queue and returns it to the calling process; if the
queue is empty, the default value ⊥ is returned.

From queue objects to consensus An wait-free algorithm that constructs a consensus object from a queue,
in a system of two processes, is described in Figure 11.5. This algorithm is based on the same principles as
the previous one, and its code it nearly the same. The only difference is in line 2 where a queue Q is used
instead of a test&set object. The queue is initialized to the sequence of items < w, ℓ >. The process that
dequeues w (the value at the head of the queue) is the winner. The process that dequeues ℓ is the loser. The
value decided by the consensus object is the value proposed by the winner.

operation propose(v) issued by pi:
(1) REG [i]← v;
(2) aux← Q.dequeue ();
(3) case (aux = w) then return (REG[i])
(4) (aux = ℓ) then return (REG[1− i])
(5) endcase

Figure 11.5: From queue to consensus

Theorem 31 The algorithm described in Figure 11.5 is a wait-free construction of a consensus object from
queue object, in a system of two processes.

120

Proof The proof is the same as the proof of theorem 30. The only difference is the way the winner process
is selected. Here, the winner is the process that dequeues the value w that is initially at the head of the queue.
As suggested by the text of the algorithm, the proof is then verbatim the same. ✷Theorem 31

11.4.3 Consensus from swap objects

Swap objects A swap object R is an atomic read/write register that has an additional operation denoted
swap(). That operation has an input parameter, the name of a local variable (local var) of the process that
invokes it. It atomically exchanges the content of the register R with the content of the local variable. The
swap operation can be described by the following statements:

operation swap (local var):
aux← R;
R← local var;
local var ← aux.

From swap objects to consensus An algorithm that wait-free implements a consensus object from a
swap object in a system of two processes is described in Figure11.5. That algorithm uses a swap object R,
initialized to ⊥. Its design principles are the same as in the previous algorithms. The winner is the process
that succeeds in depositing its index in R while obtaining the value ⊥ from R. The proof of the algorithm
is the same as the proof of the previous algorithms.

operation propose(v) issued by pi:
(1) REG [i]← v;
(2) aux← i;
(3) R.swap(aux);
(4) case (aux = ⊥) then return (REG [i])
(5) (aux ̸= ⊥) then return (REG [1− i])
(6) endcase

Figure 11.6: From swap to consensus

11.4.4 Other objects for consensus in a system of two processes

It is possible to build a wait-free implementation of a consensus object, in a system of two processes, from
other objects such as a stack, a set, a list, a priority queue. When they do not provide total operations, the
usual definition of of these objects has to be extended in order all the operations be total. As an example, a
pop on an empty stack has to be extended to the case where the stack is empty. This can easily be done, by
specifying that pop() returns a default value ⊥ when the stack is empty.

Other objects such as fetch&add objects allow wait-free implementing a consensus object in a system of
two processes. Such an object is an atomic object that can be seen as encapsulating an integer state variable
x and that can be accessed by the atomic operation fetch&add(). That operation has an input parameter,
an integer denoted incr. Its behavior can be defined as follows:

operation fetch&add (incr):
prev val ← x;
x← x+ incr;

121

return (prev val).

11.4.5 Power and limit of the previous objects

As we have shown, all the objects described previously allow wait-free implementing a consensus object in
a system of two processes. Do they allow implementing a consensus object in a system of three or more
processes? Surprisingly, The answer to that question is “no”. This section gives the proof that the queue
objects have consensus number 2. The corresponding proofs for the other objects presented in this section
are similar.

Theorem 32 Atomic wait-free queues have consensus number 2.

Proof The proof has the same structure as the proof of Theorem 28. Considering binary consensus, it as-
sumes that there is an algorithm based on queues and atomic registers that wait-free implements a consensus
object in a system of three processes (denoted p, q and r). As in Theorem 28, we show that starting from an
initial bivalent configuration C (due to theorem 27, such a configuration does exist), there is an arbitrarily
long schedule S produced by A that leads from C to another bivalent configuration S(C). This shows that
A has a run in which no process ever decides, which proves the theorem by contradiction.

Starting the algorithm A in a bivalent configuration C , let S be a maximal schedule produced by A such
that the configuration D = S(C) is bivalent. As we have seen in the proof of theorem 28, “maximal” means
that the configurations p(D), q(D) and r(D) are monovalent. Moreover, as D is bivalent, two of these
configurations have not the same valence. Without loss of generality let us say that p(D) is 0-valent and
q(D) is 1-valent; r(D) is either 0-valent or 1-valent (the important point here is that r(D) is not bivalent).

Let OPp the operation issued by p that leads from D to p(D), OPq the operation issued by q that leads
from D to q(D), and OPr the operation issued by r that leads from D to r(D). Each of OPp, OPq and OPr,
is a read or an atomic register, a write of an atomic register, an enqueue on an atomic queue, or a dequeue
on an atomic queue.

Let us consider p and q (the processes that produce configurations with different valences), and let us
consider that, from D, r does not execute operations for an arbitrarily long period.

• If both OPp and OPq are operations on atomic registers the proof of theorem 28 still applies.

• If one of OPp and OPq is an operation on an atomic register, while the other is an operation on an
atomic queue, the reasoning used in the item 1 of the proof of theorem 28 applies. This reasoning,
based on the argument depicted in Figure 11.2, allows concluding that p(q(D)) ≡ q(p(D)), while
one is 0-valent and the other is 1-valent.

It follows that the only case that remains to be investigated in when both OPp and OPq are operations on
the same atomic queue Q. We proceed by a case analysis. There are three cases.

1. Both OPp and OPp are Q.dequeue().
As p(D) and q(D) are 0-valent and 1-valent, respectively, the configuration OPq(OPp(D)) is 0-valent,
while OPp(OPq(D)) is 1-valent. But these configurations cannot be distinguished by the process r:
in both configurations, r has the same local state and each base object -atomic register or atomic
queue- has the same value. So, starting from any of these configurations, let us consider a schedule
S′ in which only r issues operations (as defined by the algorithm A) until it decides (the fact that
neither p nor q executes an operation in this schedule is made possible by asynchrony). We have

122

then (1) S′(OPq(OPp(D)) is 0-valent, and (2) S′(OPp(OPq(D)) is 1-valent. But, as OPq(OPp(D)) and
OPq(OPp(D)) cannot be distinguished by r, it has to decide the same value in both S′(OPq(OPp(D))
and S′(OPp(OPq(D)). A contradiction.

2. OPp is Q.dequeue(), while OPp is Q.enqueue(a).
(The case where OPp is Q.enqueue(a) while OPp is Q.dequeue() is the same.) There are two subcases
according to the current state of the wait-free atomic queue Q.

• Q is not empty. In that case, the configurations OPq(OPp(D)) and OPp(OPq(D)) are identical: in
both each object has the same state, and each process is in the same local state. A contradiction
because OPq(OPp(D)) is 0-valent, and OPp(OPq(D)) is 1-valent.

• Q is empty. In that case, r cannot distinguish the configuration OPp(D) and OPp(OPq(D)). The
same reasoning as the one in item 1 above shows a contradiction (the same schedule S′ starting
from any of these configurations and involving only operations by r has to decide both 0 and 1).

Bivalent configuration D

0-valent configuration p(D) 1-valent configuration q(D)

Q.enqueue(a) by p Q.enqueue(b) by q

Figure 11.7: enqueue() operations by p and q

3. OPp is Q.enqueue(a) and OPp is Q.enqueue(b). (This case is described in Figure 11.7.)
Let k be the number of items in the queue Q in the configuration D. This means that p(D) contains
k + 1 items, and q(p(D)) (or p(q(D))) contains k + 2 items (see Figure 11.8).

k ≥ 0 items

enqueue() side dequeue() sideb a

Figure 11.8: State of the queue object Q in configuration q(p(D))

As the algorithm A is wait-free and p(D) is 0-valent, there is a schedule Sp, starting from the config-
uration q(p(D)) and involving only operations1 issued by p, that ends with p deciding 0. We claim
that the schedule Sp contains an operation (by p) that dequeues the k + 1 element of Q. Assume by
contradiction that p issues at most k dequeue operations in Sp (and so never dequeues the value a it
has enqueued). In that case, if we apply the schedule p Sp to the configuration q(D), we obtain the
configuration Sp(p(q(D))) in which p decides 0 (p decides 0 because as it dequeues at most k items
from Q, it cannot distinguish p(q(D)) and q(p(D)) (these two configurations differ only in the state
of Q: its two last items in q(p(D)) are a followed by b, while they are b followed by a in p(q(D))),
and as we have just seen, p decides 0 in Sp(q(p(D)))). But this contradicts the fact that, as q(D) is
1-valent, p should decide 1, which proves the claim.

1These operations by p are on the atomic registers and the atomic queues.

123

It follows from this discussion that Sp contains at least k + 1 dequeue operations on Q (issued by p).
Let S′

p be the longest prefix of Sp that does not contain the (k + 1)th dequeue operation on Q by p.

As the algorithm A is wait-free and p(D) is 0-valent, there is a schedule Sq, starting from the config-
uration S′

p(q(p(D))) and involving only operations from q, that ends with q deciding 0. Similarly to
the above discussion, we claim that the schedule Sq contains an operation (by q) that dequeues an item
from Q. To show it, assume by contradiction, that q never dequeues from Q in Sq. In that case, if we
apply the schedule Sq to the configuration S′

p(p(q(D))), q decides 0 (as the only difference between
S′
p(p(q(D))) and S′

p(q(p(D))) is in the state of Q), which contradicts the fact that q(D) is 1-valent.

It follows from this discussion that Sq contains at least one operation that dequeues from Q. Let S′
q

be the longest prefix of Sq that does not contain that dequeue operation. We now define two schedules
that start from D, lead to different decisions, and cannot be distinguished by the third process r
(Figure 11.9).

Bivalent configuration D

1-valent configuration q(D)

Q.enqueue(a) by p Q.enqueue(b) by q

Q.enqueue(b) by q

schedule S ′p (by p)

schedule S ′q (by q)

Q.dequeue() by p

Q.dequeue() by q

D0

(p obtains a)

(q obtains b)

0-valent configuration p(D)

Q.enqueue(a) by p

Q.dequeue() by p

Q.dequeue() by q

D1

schedule S ′p (by p)

schedule S ′q (by q)

(p obtains b)

(q obtains a)

Figure 11.9: From the configuration D to D0 or D1

• The first schedule is defined by the following sequence of operations:
- p executes Q.enqueue(a) (producing p(D)),
- q executes Q.enqueue(b) (producing q(p(D))),
- p executes the operations in S′

p, then executes Q.dequeue() and obtains a,
- q executes the operations in S′

q, then executes Q.dequeue() and obtains b.
That schedule leads from the configuration D to the configuration denoted D0. As D0 is reach-
able from p(D), it is 0-valent.

• The second schedule is defined by the following sequence of operations:
- q executes Q.enqueue(b) (producing q(D)),

124

- p executes Q.enqueue(a) (producing p(q(D))),
- p executes the operations in S′

p, then executes Q.dequeue() and obtains b,
- q executes the operations in S′

q, then executes Q.dequeue() and obtains a.
That schedule leads from the configuration D to the configuration denoted D1. As D1 is reach-
able from q(D), it is 1-valent.

Let us now consider the third process r (that has not executed operations since configuration D).

All the objects have the same state in the configurations D0 and D1. Moreover, r has also the same
state in both configurations. It follows that D0 and D1 cannot be distinguished by r (the third process
that has executed no operation since the configuration D). Consequently, as the algorithm A is wait-
free and D0 is 0-valent, there is a schedule Sr, starting from the configuration D0 and involving only
operations issued by r in which r decides 0. As r cannot distinguish D0 and D1, the very same
schedule can be applied from D1 at the end of which r decides 0. A contradiction, as D1 is 1-valent.

✷Theorem 32

The following corollary is an immediate consequence of the theorems 29 and 32.

Corollary 6 Wait-free atomic objects such as queues, stacks, sets, lists, priority queues, test&set objects,
swap objects, fetch&add objects cannot be wait-free implemented from atomic registers.

11.5 Objects whose consensus number is +∞

This section shows that some atomic objects have an infinite consensus number. They can wait-free imple-
ments a consensus object whatever the number n of processes, and consequently can be used to wait-free
implement any object defined by a sequential specification on total operations in a system made up of an
arbitrary number of precesses. Three such objects are presented here: compare&swap objects, memory to
memory swap objects, and augmented queues.

11.5.1 Consensus from compare&swap objects

A compare&swap object CS is an atomic object that can be accessed by a single operation that is de-
noted compare&swap(). That operation, that returns a value, has two input parameters (two values called
old and new). Such an object can be seen as maintaining an internal state variable x. The effect of a
compare&swap() operation can be described by the following specification:

operation compare&swap(old, new):
prev ← x;
if (x = old) then x← new endif;
return (prev).

From compare&swap objects to consensus The algorithm described in Figure 11.10 is a wait-free con-
struction of a consensus object from a compare&swap object in a system of n processes, for any value of
n. The base compare&swap object CS is initialized to ⊥, a default value that cannot be proposed by the
processes to the consensus object. When a process proposes a value v to the consensus object, it first invokes
CS.compare&swap (⊥, v) (line 1). If it obtains ⊥ it decides the value irt proposes (line 2). Otherwise, it
decides the value returned from the compare&swap object (line 3).

125

operation propose(v) issued by pi:
(1) aux← CS.compare&swap (⊥, v);
(2) case aux = ⊥ then return (v)
(3) aux ̸= ⊥ then return (aux)
(4) endcase

Figure 11.10: From compare&swap to consensus

Theorem 33 The compare&swap objects have infinite consensus number.

Proof The algorithm described in Figure 11.10 is clearly wait-free. As the base compare&swap object
CS is atomic, there is a first process that executes CS.compare&swap () (as previously, “first” is defined
according to the linearization order of all the invocations CS.compare&swap ()). Let that process be the
winner. According to the specification of the compare&swap () operation, the winner has deposited v
(the value it proposes to the consensus object) in CS. As the input parameter old of any invocation of the
compare&swap () operation is ⊥, it follows that all the future compare&swap () invocations returns the
first value deposited in CS, namely the value v deposited by the winner. It follows that all the processes that
propose a value and do not crash decide the value of the winner. The algorithm is trivially independent of the
number of processes that invoke CS.compare&swap (). It follows that the algorithm wait-free implements
a consensus object for any number of processes. ✷Theorem 33

11.5.2 Consensus from mem-to-mem-swap objects

Mem-to-mem-swap objects A mem-to-mem-swap object is an atomic register that provides the processes
with three operations. The classical read and write operations plus a a binary mem-to-mem-swap() operation
that is on two registers, R1 and R2. mem-to-mem-swap(R1, R2) atomically exchanges the content of R1
and the content of R2. (This operation has not to be confused with the swap operation described in Section
11.4.3. The latter involves two base atomic registers, the former involves a single base atomic register and a
local variable.)

From mem-to-mem-swap objects to consensus The algorithm described in Figure 11.11 is a wait-free
construction of a consensus object from base atomic registers and mem-to-mem-swap objects, for any num-
ber n of processes.

A base 1WMR atomic register REG [i] is associated with each process pi. That register is used to make
public the value it proposes (line 1). A process pj can read it at line 4 if it has to decide the value proposed
by pi.

There are n + 1 mem-to-mem-swap objects. The array A[1 : n] is initialized to [0, . . . , 0], while the
object R is initialized to 1. The object A[i] is written only by pi, and this write is due to a mem-to-mem-
swap operation: pi exchange the content of A[i] with the content of R (line 2). As we can see, differently
from A[i], the mem-to-mem-swap object R can be written by any process. As described in lines 2-4, these
objects are used to determine the decided value. After it has exchanged A[i] and R, a process looks for the
first entry j of the array A such that A[j] ̸= 0, and decides the value deposited by the process pj it has h=just
determined the index name.

Before proving the next theorem and to better understand how the algorithm works let us observe that

126

operation propose(v) issued by pi:
(1) REG [i]← v;
(2) mem-to-mem-swap(A[i], R);
(3) for j from 1 to n do
(4) if (A[j] = 1) then return (REG [j]) endif;
(5) endfor

Figure 11.11: From mem-to-mem-swap to consensus

the following relation is invariant:

R+
i=n∑

i=1

A[i] = 1.

As initially, R = 1, and A[i] = 0 for each i, this relation is initially satisfied. Then, due to the fact that
the operation mem-to-mem-swap(A[i], R) issued at line 2 is executed atomically, it follows that the relation
remains true forever.

Lemma 16 The mem-to-mem-swap object type has consensus number n in a system of n processes.

Proof The algorithm is trivially wait-free (the loop is bounded). As before, let the winner be the process
pi that sets A[i] to 1 when it executes line 2. As any A[j] is written at most once, we conclude from the
previous invariant, that there is a single winner. Moreover, due to the atomicity of the mem-to-mem-swap
objects, the winner is the first process that executes line 2. As, before becoming the winner, the winner
process pi has deposited in REG [i] the value v it proposes to the consensus object, we have REG[i] = v
and A[i] = 1 before the other processes terminate the execution of line 2. It follows that all the processes
that decide return the value proposed by the single winner process. ✷Lemma 16

An object type is universal in a system of n processes if it allows wait-free contructing a consensus
object for n processes. The following corollary is an immediate consequence of the previous lemma.

Corollary 7 Mem-to-mem-swap objects are universal in a system of n processes.

Theorem 34 The mem-to-mem-swap objects have infinite consensus number.

Proof The proof follows from the fact that, whatever n, it is always possible to construct a consensus object
in a system of n processes from mem-to-mem-swap objects. ✷Theorem 34

11.5.3 Consensus from augmented queue objects

This type of objects is very close to the previous queue we have studied. Interestingly, the augmented
queues have infinite consensus umber. This shows that enriching an object with an additional operation can
infinitely increase its power when one is interested in the wait-free implementation of consensus objects.

An augmented queue is a queue with an additional operation denoted peek() that returns the first item
of the queue without removing it. In some sense, that operation allows reading a part of a queue without
modifying it.

The algorithm in Figure 11.12 provides a wait-free construction of a consensus object from an aug-
mented queue. The construction is pretty simple. The augmented queue Q is initially empty. A process first

127

operation propose(v) issued by pi:
Q.enqueue(v);
return (Q.peek())

Figure 11.12: From an augmented queue to consensus

enqueues the value v it proposes to the consensus object. Then, it invokes the peek() operation to obtain the
first value that has been enqueued. It is easy to see that the construction works for any number of processes,
and we have the following theorem:

Theorem 35 The augmented queue objects have infinite consensus number.

11.5.4 Impossibility result

Corollary 8 There is no wait-free implementation of an object of type compare&swap, mem-to-mem-swap
or augmented queue from base objects of type stack, queue, set, priority queue, swap, fetch&add or test&set.

Proof The proof follows directly from the combination of theorem 32 (the cited base objects have consensus
number 2), theorems 33, 34 and 35 (compare&swap or mem-to-mem-swap objects have infinite consensus
number) and theorem ?? (impossibility to wait-free implement Y from X when CN (X) < CN (Y)).

✷Corollary 8

11.6 Hierarchy of atomic objects

11.6.1 From consensus numbers to a hierarchy

Consensus numbers establish a hierarchy on the power of object types to wait-free implement a consensus
object, i.e., to wait-free implement any object defined by a sequential specification on total operations. More
generally:

• Consensus numbers allow ranking the power of classical synchronization primitives (provided by
shared memory parallel machines) in presence of process crashes: compare&swap is stronger than
tes&set that is in turn stronger than atomic read/write operations. Interestingly, they also show that
classical objects encountered in sequential computing such as stacks and queues are as powerful as
the test&set or fetch&add synchronization primitives when one is interested in providing upper layer
application processes with wait-free objects.

• Fault masking can be impossible to achieve when the designer is not provided with powerful enough
atomic synchronization operations. As an example, a first in/first out queue that has to tolerate the
crash of a single process, can not be built from atomic registers. This follows from the fact that the
consensus number of a queue is 2, while the he consensus number of atomic registers is 1.

11.6.2 Robustness of the hierarchy

Let us remind the definition of consensus number, stated at the beginning of this chapter: the consensus num-
ber associated with an object type T is the largest number n such that it is possible to wait-free implement,
in a system of n processes, a consensus object from atomic registers and objects of type T .

128

The previous object hierarchy is robust in the following sense. Any set of object types with consensus
numbers equal to or smaller than k cannot wait-free implement an object whose consensus number is at
a higher level of the hierarchy, i.e., an object whose consensus number is greater than k. The hierarchy
would no longer be robust if the definition of the consensus number notion prevented the use of base atomic
registers.

Bibliographic notes

Herlihy 1991

FLP 85; Loui-Abu Amara, Anderson-Gouda, etc (voir dans H91)

Attiya-Welch 98, Lynch 96

Chandra-Jayanti-Toueg JACM 98

129

130

Chapter 12

Variants of consensus: Commit-Adopt and
Safe Agreement

In Chapter 10, we introduced the notion of consensus and showed that consensus is a universal object.
In Cahpter ?? we convinced oursleves that there is no wait-free implementation of consensus using basic

reads and writes. One way to circumvent this impossibility is to relax either safety property (atomicity) or
liveness property (wait-freedom) of consensus.

In this chapter we introduce two such relaxations. The Commit-Adopt abstraction that may produce
different outputs at different processes under some circumstances and, thus, relaxes safety of consensus. In
contrast, the Safe Agreement abstraction permits cases when a process takes infinitely many steps without
an output and, thus, violates liveness of consensus.

We then show how these two abstractions can be used for building more sophisticated abstractions.
Commit-adopt, combined with randomization or eventual leader oracle, allows for solving consensus. Fi-
nally we show that safe agreement enables simulations: it allows a set of k + 1 simulators “mimic” a
k-resilient execution of an arbitrary algorithm running on m > k processes.

12.1 Pre-agreement with Commit-Adopt

The commit-adopt abstraction (CA), like consensus, exports one operation propose(v) that, unlike in con-
sensus, returns (commit , v′) or (adopt , v′), for v′ and v are in a (possibly unbounded) set of values V . If
propose(v) invoked by a process pi returns (adopt , v ′), we say that pi adopts v′. If the operation returns
(commit , v ′), we say that pi commits on v′. Intuitively, a process commits on v′, when it is sure that no
other process can decide on a value different from v′. A process adopts v′ when it suspects that another
process might have committed v′. Formally, CA guarantees the following properties:

(a) every returned value is a proposed value,

(b) if all processes propose the same value then no process adopts,

(c) if a process commits on a value v, then every process that returns adopts v or commits v, and

(d) every correct process returns.

131

Shared objects:
A, B, store-collect objects, initially ⊥

propose(v)
29 est := v
30 A.store(est)
31 V := A.collect()
32 if all values in V are est then
33 B.store((true, est))
34 then
35 B.store((false, est))
36 V := B.collect()
37 if all values in V are (true, ∗) then
38 (return(commit , est)
39 else if V contains (true, v ′) then
40 est := v′

41 (return(adopt , est)

Figure 12.1: A commit-adopt algorithm

12.1.1 Wait-free commit adopt implementation

The commit-adopt abstraction can be implemented using two (wait-free) store-collect objects, A and B, as
follows. Every process pi first stores its input v in A and then collects A. If no value other than v was found
in A, pi stores (true, v) in B. Otherwise, pi stores (false, v) in B. If all values collected from B are of the
form (true, ∗), then pi commits on its own input value. Otherwise, if at least one of the collected values
is (true, v ′), then pi adopts v′. Intuitively, going first through A guarantees that there is at most one such
value v′. Otherwise, if pi cannot commit or adopt a value from another process, it simply adopts its own
input value.

Correctness. Now we prove that the algorithm in Figure 12.1 satisfies properties (a)-(d) of commit-adopt.
Property (a) follows trivially from the algorithm and the Validity property of store-collect (see Sec-

tion 8.1.1): every returned value was previously proposed by some process. If all processes propose the
same value, then the conditions in the clauses in lines 32 and 37 hold true, and thus, every process that re-
turns must commit—property (b) is satisfied. Property (d) is implied by the fact that the algorithm contains
only finitely many steps and every store-collect object is wait-free.

To prove (c), suppose, by contradiction, that two processes, pi and pj , store two different values, v′

and v′′, respectively, equipped with flag true in B (line 33). Thus, the collect operation performed by pi
in line 31 returns only values v. By the up-to-dateness property of store-collect and the algorithm , pi has
previously stored v′ in A (line 30). Similarly, pj has stored v′′ in A.

Again, by the up-to-dateness property of store-collect, the A.store(v′′) operation performed by pj
does not precede the A.collect() operation performed by pi. (Otherwise pi would find v′′ in A.) Thus,
inv [A.collect()] by pi precedes resp[A.store(v′′)] by pj in the current execution. But, by the algorithm
resp[A.store(v′)] precedes inv [A.collect()] at pi and, resp[A.store(v′′)] precedes inv [A.collect()] at pj .
Hence, resp[A.store(v′)] by pi precedes inv [A.collect()] by pj and, by up-to-dateness of store-collect, pj
should have found v′ is A—a contradiction.

Thus, no two different values can be written to B with flag true . Now suppose that a process pi commits

132

on v. If every process that returns either commits or adopts a value in line 40, then property (c) follows from
the fact that no two different values with flag true can be found in B. Suppose, by contradiction that some
process pj does not find any value with flag true in B (37) and adopts its own value. By the algorithm,
pj has previously stored (false , v′′) in line 35. But, again, B.store((true , v′)) performed by pi does not
precede B.collect() performed by pj and, thus, B.store((false , v′′)) performed by pj precedes B.collect()
performed by pi. Thus, pi should have found (false, v′′) in B—a contradiction. Thus, if a process commits
on v′, no other process can commit on or adopt a different value—property (c) holds.

12.1.2 Using commit-adopt

Commit-adopt can be viewed as a way to establish safety in shared-memory computations.
For example, consider a protocol where every processes goes through a series of instances of commit-

adopt protocols, CA1, CA2, . . ., one by one, where each instance receives a value adopted in the previous
instance as an input (the initial input value for CA1). One can easily see that once a value v is committed
in some CA instance, no value other than v can ever be committed (properties (a) and (c) above). One the
other hand, if at most one value is proposed to some CA instance, then this value must be committed by
every process that takes enough steps (property (b) above).

This algorithm can be viewed as a safe version of consensus: every committed value is a proposed value
and no two processes commit on different values (properties (a), (b) and (c) above). Given that every correct
process goes from one CA instance to the other as long as it does not commit (property (d) above), we can
boost the liveness guarantees of this protocol using external oracles.

In fact, the algorithm per se guarantees termination in every obstruction-free execution, i.e., assuming
that eventually at most one process is taking steps. Moreover, we can build a consensus algorithm that
terminates almost always if we allow processes to toss coins when choosing an input value for the next
CA instance [8]. Also, if we allow a process to access an oracle (e.g., the Ω failure detector of [18]) that
eventually elects a correct leader process, we get a live consensus algorithm.

12.2 Safe Agreement and the power of simulation

The interface of the safe agreement (SA) abstraction is identical to that of consensus: processes propose
values and agree one of the proposed values at the end. Indeed, the BG-agreement protocol ensures the
agreement and validity properties of consensus (Section 10.2)—every decided value was previously pro-
posed, and no two different values are decided— but not termination. The SA-termination property only
guarantees that every correct process returns if every participant every takes enough sharedmemory steps.
Here a process is called a participant if it takes at least one step, and “enough” is typically O(n), where n is
the number of processes.

12.2.1 Solving safe agreement

A safe agreement algorithm using two atomic snapshot objects A and B is given Figure 12.2. In the algo-
rithm, a process inserts its input in the first snapshot object (line 43) and takes a scan of the inputs of other
processes (line 44) . Then the process inserts the result of the scan in the second snapshot object (line 45)
and waits until every participating process finishes the protocol (the repeat-until clause in lines 46- 48).
Finally, the process returns the smallest value (we assume that the value set is ordered) in the smallest-size
non-⊥ snapshot found in B (containing the smallest number of non-⊥ values). (Recall that for every two

133

Shared objects:
A, B, snapshot objects, initially ⊥

propose(v)
42 est := v
43 A.update(est)
44 U := A.scan()
45 B.update(U)
46 repeat
47 V := B.scan()
48 until for all j: (U [j] = ⊥) ∨ (V [j] ̸= ⊥)
49 S := argminj{|V [j]|; V [j] ̸= ⊥}
50 (return min(S)

Figure 12.2: Safe agreement

results of scan operation, U and U ′, we have U ≤ U ′ or U ′ ≤ U . Thus, there indeed exists the smallest such
snapshot.)

Correctness. SA-termination follows immediately from the algorithm: if every process that executed
line 43 also executes line 45, then the exit condition of the repeat-until clause in line 48 eventually holds
and every correct participant terminates. If snapshot object A is implemented from atomic registers (8),
then it is sufficient for every participant to take O(n) read-write steps to ensure that every correct participant
terminates.

The validity property of consensus is also immediate: only a previously proposed value can be found in
a snapshot object.

To prove the agreement property of consensus, consider the process pt that wrote the smallest snapshot
Ut to B in line 45. First we observe that Ut[t] ̸= ⊥, i.e., pt found its own input value in the snapshot taken in
line 44. Moreover, every other snapshot taken in A is a superset of Ut. Thus, every other process waits until
pt writes Ut in line 45 before terminating. Hence, every terminated process evaluates Ut to be the smallest
snapshot in line 49 and decides on the same (smallest) value found in Ut.

12.2.2 BG-simulation

BG-simulation (BG for Elizabeth Borowsky and Eli Gafni) is a technique by which k+1 processes s1, . . . , sk+1,
called simulators, can wait-free simulate a k-resilient execution of any algorithm Alg on n processes
p1, . . . , pn (n > k). The simulation guarantees that each simulated step of every process pj is either agreed
upon by all simulators using SA, or one less simulator participates further in the simulation for each step
which is not agreed on.

If one of the simulators slows down while executing SA, the protocol’s execution at other correct sim-
ulators may “block” until the slow simulator finishes the protocol. If the slow simulator is faulty, no other
simulator is guaranteed to decide.

Suppose the simulation tries to trigger read-write steps of a given algorithm A for n simulated processes
in a fair (e.g., round-robin) way. Therefore, as long there is a live simulator, at least m − k simulated
processes performs infinitely many steps of Alg in the simulated execution, i.e., the resulting simulated
execution is k-resilient.

134

PK: define simulation here
Thus:

Theorem 36 Let A be any algorithm for n processes. Then BG-simulation allows k+1 simulators (k < n)
to trigger a k-resilient execution of A.

Theorem ?? implies that, for a large class of colorless tasks, finding a k-resilient solution for n processes
is equivalent to finding a wait-free solution for k + 1 ≤ n processes Informally, in a solution of a colorless
task, a process is free to adopt the input or output value of any other participating process. Thus, a colorless
tasks can be defined as a relation between the sets of inputs and the sets of outputs.

PK: do we need to talk about tasks? Or set agreement would be enough?
Thus:

Corollary 9 Let T be any colorless task. Then T can be solved by n processes k-resiliently (k < n) if and
only if T can be solved by k + 1 processes wait-free.

Bibliographic notes

Gafni 1998
Borowsy-Gafni 1993, BGLR01

135

136

Part V

Schedulers

137

Chapter 13

Failure Detectors

As we have seen, only a small set of problems can be solved in an asynchronous fault-prone system. This
chapter focuses on failure detectors, a popular abstraction proposed to overcome these impossibilities.

Informally, a failure detector is a distributed oracle that provides processes with hints about failures [19].
The notion of a weakest failure detector [18] captures the exact amount of information about failures needed
to solve a given problem: D is the weakest failure detector for solving M if (1) D is sufficient to solve M,
i.e., there exists an algorithm that solves M using D, and (2) any failure detector D′ that is sufficient to solve
M provides at least as much information about failures as D does, i.e., there exists a reduction algorithm
that extract the output of D using the failure information provided by D′.

One of the most important results in distributed computing was showing that the “eventual leader” failure
detector Ω is necessary and sufficient to solve consensus. The failure detector Ω outputs, when queried, a
process identifier, such that, eventually, the same correct process identifier is output at all correct processes.

We consider a system of n crash-prone processes that communicate using atomic reads and writes in
shared memory. Recall that in the (binary) consensus problem [30], every process starts with a binary input
and every correct (never-failing) process is supposed to output one of the inputs such that no two processes
output different values. As we know by now, consensus is impossible to solve using reads and writes in
the asynchronous system of two or more processes, as long as at least one process may fail by crashing. In
particular, it is not possible to solve 2-process in the wait-free manner.

13.1 Solving problems with failure detectors

Until now, we assumed that processes are restricted to apply operations on shared objects. In this chapter,
they can also query a failure-detector oracle. But how exactly is this done? An how can we compare failure
detectors based on the amount of information about failures they provide?

We first define formally the failure-detector abstraction as a map from a failure pattern (describing the
failures that actually took place) to failure-detector histories (describing the hints about failures provided by
the failure detector). We then discuss how to solve problems using failure detectors and introduce a partial
order on failure detectors that will allow us to define the notion of a weakest failure detector for a given
problem.

139

13.1.1 Failure patterns and failure detectors

We assume the existence of a discrete time range T = {0} ∪ N. Each event in an execution is supposed to
take place in a distinct moment of time. Without loss of generality, and with a little abuse of intuition, we
assume that all events in an execution are totally ordered according to the times they occurred.

A failure pattern F is a function from the time range T = {0} ∪ N to 2Π, where F (t) denotes the set
of processes that have crashed by time t. Once a process crashes, it does not recover, i.e., ∀t : F (t) ⊆
F (t+1). The set of faulty processes in F , ∪t∈TF (t), is denoted by faulty(F). Respectively, correct(F) =
Π − faulty(F). A process p ∈ F (t) is said to be crashed at time t. An environment is a set of failure
patterns. For example, a t-resilient environments consists of all failure patterns in which at most t processes
are faulty. Without loss of generality, we assume environments that consists of failure patterns in which at
least one process is correct.

A failure detector history H with range R is a function from Π × T to R. Here H(pi, t) is interpreted
as the value output by the failure detector module of process pi at time t.

Finally, a failure detector D with range RD is a function that maps each failure pattern to a (non-empty)
set of failure detector histories with range RD. D(F) denotes the set of possible failure detector histories
permitted by D for failure pattern F .

For example, consider the following failure detectors:

• The perfect failure detector P outputs a set of suspected processes at each process. P ensures strong
completeness: every crashed process is eventually suspected by every correct process, and strong
accuracy: no process is suspected before it crashes.

Formally, for each failure pattern F , and each history H ∈ P(F) ⇔
(
∃t ∈ T ∀p ∈ faulty(F) ∀q ∈ correct (F) ∀t′ ≥ t : p ∈ H(q, t′)

)
∧

(
∀t ∈ T ∀p, q ∈ Π− F (t) : p /∈ H(q, t)

)

• The eventually perfect failure detector ✸P [19] also outputs a set of suspected processes at each
process. But the guarantees provided by ✸P are weaker than those of P . There is a time after which
✸P outputs the set of all faulty processes at every non-faulty process. More precisely, ✸P satisfies
strong completeness and eventual strong accuracy: there is a time after which no correct process is
ever suspected.

Formally, for each failure pattern F , and each history H ∈ ✸P(F) ⇔

∃t ∈ T ∀p ∈ correct(F) ∀t′ ≥ t : H(p, t′) = faulty(F)

• The leader failure detector Ω [18] outputs the id of a process at each process. There is a time after
which it outputs the id of the same non-faulty process at all non-faulty processes.

Formally, for each failure pattern F , and each history H ∈ Ω(F) ⇔

∃t ∈ T ∃q ∈ correct(F) ∀p ∈ correct(F) ∀t′ ≥ t : H(p, t′) = q

• The quorum failure detector Σ [24] outputs a set of processes at each process. Any two sets (output
at any times and at any processes) intersect, and eventually every set consists of only non-faulty
processes.

140

Formally, for each failure pattern F , and each history H ∈ Σ(F) ⇔
(
∀p, p′ ∈ Π ∀t, t′ ∈ TH(p, t) ∩H(p′, t′) ̸= ∅

)
∧

(
∀p ∈ correct(F) ∃t ∈ T ∀t′ ≥ t H(p, t′) ⊆ correct (F)

)
.

13.1.2 Algorithms using failure detectors

We now define the notion of an algorithm in systems with failure detectors. Formally, an algorithm A using
a failure detector D is a collection of deterministic automata, one for each process in the system. Let Ai

denote the automaton on which process pi runs the algorithm A. Computation proceeds in atomic steps of
A. In each step of A, process pi

(i) invokes an atomic operation (read or write) on a shared object and receives a response or queries its
failure detector module Di and receives a value from D, and

(ii) applies its current state, the response received from the shared object or the value output by D to the
automaton Ai to obtain a new state.

A step of A is thus identified by a tuple (pi, d), where d is the failure detector value output at pi during that
step if D was queried, and ⊥ otherwise.

If the state transitions of the automata Ai do not depend on the failure detector values, the algorithm A
is called asynchronous. Thus, for an asynchronous algorithm, a step is uniquely identified by the process id.

13.1.3 Runs

A state of algorithm A defines the state of each process and each object in the system. An initial state I of
A specifies an initial state for every automaton Ai and every shared object.

A run of algorithm A using a failure detector D in an environment E is a tuple R = ⟨F,H, I, S, T ⟩
where F ∈ E is a failure pattern, H ∈ D(F) is a failure detector history, I is an initial state of A, S is an
infinite sequence of steps of A respecting the automata A and the sequential specification of shared objects,
and T is an infinite list of increasing time values indicating when each step of S has occurred, such that for
all k ∈ N, if S[k] = (pi, d) with d ̸= ⊥, then pi /∈ F (T [k]) and d = H(pi, T [k]).

A run ⟨F,H, I, S, T ⟩ is fair if every process in correct(F) takes infinitely many steps in S, and k-
resilient if at least n − k processes appear in S infinitely often. A partial run of an algorithm A is a finite
prefix of a run of A.

For two steps s and s′ of processes pi and pj , respectively, in a (partial) run R of an algorithm A, we say
that s causally precedes s′ if in R, and we write s→ s′, if (1) pi = pj , and s occurs before s′ in R, or (2) s
is a write step, s′ is a read step, and s occurs before s′ in R, or (3) there exists s′′ in R, such that s→ s′′ and
s′′ → s′.

13.1.4 Consensus

Recall that in the binary consensus problem, every process starts the computation with an input value in
{0, 1} (we say the process proposes the value), and eventually reaches a distinct state associated with an
output value in {0, 1} (we say the process decides the value). An algorithm A solves consensus in an
environment E if in every fair run of A in E , (i) every correct process eventually decides, (ii) every decided
value was previously proposed, and (iii) no two processes decide different values.

141

Given a an algorithm that solves consensus, it is straightforward to implement an abstraction cons that
can be accessed with an operation propose(v) (v ∈ {0, 1}) returning a value in {0, 1}, and guarantees that
every propose operation invoked by a correct process eventually returns, every returned value was previously
proposed, and no two different values are ever returned.

13.1.5 Implementing and comparing failure detectors

The failure detector abstraction intends to capture the minimal information about failures that suffices to
solve a given problem. But what does “minimal” actually mean? Intuitively, it should mean that any failure
detector that enables solutions to the problem provides at least as much information about failures. But
given that failure detectors can give their hints about failures in arbitrary formats, it becomes necessary
to introduce a way to compare different failure detectors. Here we define a notion of reduction between
failure detectors in the algorithmic sense: a failure detector D provides as much information about failures
as failure detector D′ if there is an algorithm that uses D to implements D′.

More precisely, an implementation of a failure detector D in an environment E provides a query op-
eration to every process that, when invoked, returns a value in RD. It is required that in every run of the
implementation with a failure pattern F ∈ E , there exists a history H ∈ D(F) such that, for all times
t1, t2 ∈ N, if process pi queries D at time t1 and the query returns response d at time t2, then d = H(pi, t)
for some t ∈ [t1, t2].

If, for failure detectors D and D′ and an environment E , there is an implementation of D using D′ in E ,
then we say that D is weaker than D′ in E .

13.1.6 Weakest failure detector

Finally, we are ready to define the notion of a weakest failure detector for solving a given problem (in this
section this problem is going to be consensus).

D is a weakest failure detector to solve a problem M (e.g., consensus) in E if there is an algorithm that
solves M using D in E and D is weaker than any failure detector that can be used to solve M in E .

13.2 Extracting Ω

Let A be an algorithm that solves consensus using a failure detector D. The goal is to construct an algorithm
that emulates Ω using A and D. Recall that to emulate Ω means to output, at each time and at each process,
a process identifiers such that, eventually, the same correct process is always output.

13.2.1 Overview of the Reduction Algorithm

Our reduction algorithm uses the given failure detector D to construct an ever-growing directed acyclic
graph (DAG) that contains a sample of the values output by D in the current run and captures some temporal
relations between them. This DAG can be used by an asynchronous algorithm A′ to simulate a (possibly
finite and “unfair”) run of A. In particular, since the original algorithm A solves consensus, no two processes
can decide differently in a run of A′.

Recall that, using BG-simulation, 2 processes can simulate a 1-resilient run of A′. The fact that wait-free
2-process consensus is impossible implies that the simulation, when used for all possible inputs provided
to the two simulatore, must produce at least one ”non-deciding” 1-resilient run of A′, i.e., in at least one
simulated 1-resilient run of A′ some process takes infinitely many steps without deciding.

142

Shared variables:
for all pi ∈ Π: Gi, initially empty graph

51 ki := 0
52 while true do
53 for all pj ∈ Π do Gi ← Gi ∪Gj

54 di := query failure detector D
55 ki := ki + 1
56 add [pi, di, ki] and edges from all other vertices

of Gi to [pi, di, ki], to Gi

Figure 13.1: Building a DAG: the code for each process pi

In the reduction algorithm, every correct process locally simulates all executions of BG-simulation on
two processes q1 and q2 that simulate a 1-resilient run of A′ of the whole system Π. Eventually, every
correct process locates a never-deciding run of A′ and uses the run to extract the output of Ω: it is sufficient
to output the process that takes the least number of steps in the “smallest” non-deciding simulated run of
A′. Indeed, exactly one correct process takes finitely many steps in the non-deciding 1-resilient run of A′:
otherwise, the run would simulate a fair and thus deciding run of A.

The reduction algorithm extracting Ω from A and D consists of two components that are running in
parallel: the communication component and the computation component. In the communication component,
every process pi maintains the ever-growing directed acyclic graph (DAG) Gi by periodically querying its
failure detector module and exchanging the results with the others through the shared memory. In the
computation component, every process simulates a set of runs of A using the DAGs and maintains the
extracted output of Ω.

13.2.2 DAGs

The communication component is presented in Figure 13.1. This task maintains an ever-growing DAG that
contains a finite sample of the current failure detector history. The DAG is stored in a register Gi which can
be updated by pi and read by all processes.

DAG Gi has some special properties which follow from its construction [18]. Let F be the current
failure pattern, and H ∈ D(F) be the current failure detector history. Then a fair run of the algorithm in
Figure 13.1 guarantees that there exists a map τ : Π×RD ×N <→ T, such that, for every correct process pi
and every time t (x(t) denotes here the value of variable x at time t):

(1) The vertices of Gi(t) are of the form [pj , d, ℓ] where pj ∈ Π, d ∈ RD and ℓ ∈ N.

(a) For each vertex v = [pj, d, ℓ], pj /∈ F (τ(v)) and d = H(pj , τ(v)). That is, d is the value output
by pj’s failure detector module at time τ(v).

(b) For each edge (v, v′), τ(v) < τ(v′). That is, any edge in Gi reflects the temporal order in which
the failure detector values are output.

(2) If v = [pj , d, ℓ] and v′ = [pj , d′, ℓ′] are vertices of Gi(t) and ℓ < ℓ′ then (v, v′) is an edge of Gi(t).

(3) Gi(t) is transitively closed: if (v, v′) and (v′, v′′) are edges of Gi(t), then (v, v′′) is also an edge of
Gi(t).

143

Shared variables:
V1, . . . , Vn := ⊥, . . . ,⊥,

{for each pj , Vj is the vertex of G
corresponding to the latest simulated step of pj}

Shared variables of A

57 initialize the simulated state of pi in A, based on I ′

58 ℓ := 0
59 while true do

{Simulating the next pi’s step of A}
60 U := [V1, . . . , Vn]
61 repeat
62 ℓ := ℓ+ 1
63 wait until G includes [pi, d, ℓ] for some d
64 until ∀j, U [j] ̸= ⊥: (U [j], [pi, d, ℓ]) ∈ G
65 Vi := [pi, d, ℓ]
66 take the next pi’s step of A using d as the output of D

Figure 13.2: DAG-based asynchronous algorithm A′: code for each pi

(4) For all correct processes pj , there is a time t′ ≥ t, a d ∈ RD and a ℓ ∈ N such that, for every vertex v
of Gi(t), (v, [pj , d, ℓ]) is an edge of Gi(t′).

(5) For all correct processes pj , there is a time t′ ≥ t such that Gi(t) is a subgraph of Gj(t′).

The properties imply that ever-growing DAGs at correct processes tend to the same infinite DAG G: limt→∞Gi(t) =
G. In a fair run of the algorithm in Figure 13.1, the set of processes that obtain infinitely many vertices in G
is the set of correct processes [18].

13.2.3 Asynchronous simulation

It is shown below that any infinite DAG G constructed as shown in Figure 13.1 can be used to simulate
partial runs of A in the asynchronous manner: instead of querying D, the simulation algorithm A′ uses the
samples of the failure detector output captured in the DAG. The pseudo-code of this simulation is presented
in Figure 13.2. The algorithm is hypothetical in the sense that it uses an infinite input, but this requirement
is relaxed later.

In the algorithm, each process pi is initially associated with an initial state of A and performs a sequence
of simulated steps of A. Every process pi maintains a shared register Vi that stores the vertex of G used for
the most recent step of A simulated by pi. Each time pi is about to perform a step of A it first reads registers
V1, . . . , Vn to obtain the vertexes of G used by processes p1, . . . , pn for simulating the most recent causally
preceding steps of A (line 60 in Figure 13.2). Then pi selects the next vertex of G that succeeds all vertices
(lines 83-92). If no such vertex is found, pi blocks forever (line 63).

Note that a correct process pi may block forever if G contains only finitely many vertices of pi. As a
result an infinite run of A′ may simulate an unfair run of A: a run in which some correct process takes only
finitely many steps. But every finite run simulated by A′ is a partial run of A.

Theorem 37 Let G be the DAG produced in a fair run R = ⟨F,H, I, S, T ⟩ of the communication compo-
nent in Figure 13.1. Let R′ = ⟨F ′,H ′, I ′, S′, T ′⟩ be any fair run of A′ using G. Then the sequence of steps

144

simulated by A′ in R′ belongs to a (possibly unfair) run of A, RA, with input vector of I ′ and failure pattern
F . Moreover, the set of processes that take infinitely many steps in RA is correct (F) ∩ correct(F ′), and if
correct(F) ⊆ correct (F ′), then RA is fair.

Proof Recall that a step of a process pi can be either a memory step in which pi accesses shared memory
or a query step in which pi queries the failure detector. Since memory steps simulated in A′ are performed
as in A, to show that algorithm A′ indeed simulates a run of A with failure pattern F , it is enough to make
sure that the sequence of simulated query steps in the simulated run (using vertices of G) could have been
observed in a run RA of A with failure pattern F and the input vector based on I ′.

Let τ be a map associated with G that carries each vertex of G to an element in T such that (a) for
any vertex v = [p, d, ℓ] of G, p /∈ F (τ(v)) and d = H(pj, τ(v)), and (b) for every edge (v, v′) of G,
τ(v) < τ(v′) (the existence of τ is established by property (5) of DAGs in Section 13.2.2). For each step
s simulated by A′ in R′, let τ ′(s) denote time when step s occurred in R′, i.e., when the corresponding
line 66 in Figure 13.2 was executed, and v(s) be the vertex of G used for simulating s, i.e., the value of Vi

when pi simulates s in line 66 of Figure 13.2.
Consider query steps si and sj simulated by processes pi and pj , respectively. Let v(si) = [pi, di, ℓ]

and v(sj) = [pj , dj ,m]. WLOG, suppose that τ([pi, di, ℓ]) < τ([pj , dj ,m]), i.e., D outputs di at pi before
outputting dj at pj .

If τ ′(si) < τ ′(sj), i.e., si is simulated by pi before sj is simulated by pj , then the order in which si and
sj see value di and dj is the run produced by A′ is consistent with the output of D, i.e., the values di and dj
indeed could have been observed in that order.

Suppose now that τ ′(si) > τ ′(sj). If si and sj are not causally related in the simulated run, then R′ is
indistinguishable from a run in which si is simulated by pi before sj is simulated by pj . Thus, si and sj can
still be observed in a run of A.

Now suppose, by contradiction that τ ′(si) > τ ′(sj) and sj causally precedes si in the simulated run,
i.e., pj simulated at least one write step s′j after sj , and pi simulated at least one read step s′i before si,
such that s′j took place before s′i in R′. Since before performing the memory access of s′j , pj updated Vj

with a vertex v(s′j) that succeeds v(sj) in G (line 65), and s′i occurs in R′ after s′j , pi must have found
v(s′j) or a later vertex of pj in Vj before simulating step si (line 60) and, thus, the vertex of G used for
simulating si must be a descendant of [pj, dj ,m], and, by properties (1) and (3) of DAGs (Section 13.2.2),
τ([pi, di, ℓ]) > τ([pj , dj ,m]) — a contradiction. Hence, the sequence of steps of A simulated in R′ could
have been observed in a run RA of A with failure pattern F .

Since in A′, a process simulates only its own steps of A, every process that appears infinitely often in RA
is in correct (F ′). Also, since each faulty in F process contains only finitely many vertices in G, eventually,
each process in correct(F ′)− correct (F) is blocked in line 63 in Figure 13.2, and, thus, every process that
appears infinitely often in RA is also in correct (F). Now consider a process pi ∈ correct(F ′)∩correct (F).
Property (4) of DAGs implies that for every set V of vertices of G, there exists a vertex of pi in G such that
for all v′ ∈ V , (v′, v) is an edge in G. Thus, the wait statement in line 63 cannot block pi forever, and pi
takes infinitely many steps in RA.

Hence, the set of processes that appear infinitely often in RA is exactly correct (F ′) ∩ correct(F).
Specifically, if correct(F) ⊆ correct(F ′), then the set of processes that appear infinitely often in RA is
correct(F), and the run is fair. ✷Theorem 37

Note that in a fair run, the properties of the algorithm in Figure 13.2 remain the same if the infinite DAG G is
replaced with a finite ever-growing DAG Ḡ constructed in parallel (Figure 13.1) such that limt→∞ Ḡ = G.
This is because such a replacement only affects the wait statement in line 63 which blocks pi until the first

145

vertex of pi that causally succeeds every simulated step recently ”witnessed” by pi is found in G, but this
cannot take forever if pi is correct (properties (4) and (5) of DAGs in Section 13.2.2). The wait blocks
forever if the vertex is absent in G, which may happen only if pi is faulty.

13.2.4 BG-simulation

Borowsky and Gafni proposed in [12, 14], a simulation technique by which k + 1 simulators q1, . . . , qk+1

can wait-free simulate a k-resilient execution of any asynchronous n-process protocol. Informally, the
simulation works as follows. Every process qi tries to simulate steps of all n processes p1, . . . , pn in a
round-robin fashion. Simulators run an agreement protocol to make sure that every step is simulated at most
once. Simulating a step of a given process may block forever if and only if some simulator has crashed in
the middle of the corresponding agreement protocol. Thus, even if k out of k + 1 simulators crash, at least
n− k simulated processes can still make progress. The simulation thus guarantees at least n− k processes
in {p1, . . . , pn} accept infinitely many simulated steps.

In the computational component of the reduction algorithm, the BG-simulation technique is used as fol-
lows. Let BG(A′) denote the simulation protocol for 2 processes q1 and q2 which allows them to simulate,
in a wait-free manner, a 1-resilient execution of algorithm A′ for n processes p1, . . . , pn. The complete
reduction algorithm thus employs a triple simulation: every process pi simulates multiple runs of two pro-
cesses q1 and q2 that use BG-simulation to produce a 1-resilient run of A′ on processes p′1, . . . , p′n in which
steps of the original algorithm A are periodically simulated using (ever-growing) DAGs G1, ..., Gn. (To
avoid confusion, we use p′j to denote the process that models pj in a run of A′ simulated by a “real” process
pi.)

We are going to use the following property which is trivially satified by BG-simulation:

(BG0) A run of BG-simulation in which every simulator take infinitely many steps simulates a run in which
every simulated process takes infinitely many steps.

13.2.5 Using consensus

The triple simulation we are going to employ faces one complication though. The simulated runs of the
asynchronous algorithm A′ may vary depending on which process the simulation is running. This is because
G1, ..., Gn are maintained by a parallel computation component (Figure 13.1), and a process simulating a
step of A′ may perform a different number of cycles reading the current version of its DAG before a vertex
with desired properties is located (line 63 in Figure 13.2). Thus, the same sequence of steps of q1 and q2
simulated at different processes may result in different 1-resilient runs of A′: waiting until a vertex [pi, d, ℓ]
appears in Gj at process pj may take different number of local steps checking Gj , depending on the time
when pj executes the wait statement in line 63 of Figure 13.2.

To resolve this issue, the wait statement is implemented using a series of consensus instances consi,ℓ1 ,
consi,ℓ2 , . . . (Figure 13.3). If pi is correct, then eventually each correct process will have a vertex [pi, d, ℓ]
in its DAG and, thus, the code in Figure 13.3 is non-blocking, and Theorem 37 still holds. Furthermore, the
use of consensus ensures that if a process, while simulating a step of A′ at process pi, went through r steps
before reaching line 92 in Figure 13.2, then every process simulating this very step does the same. Thus,
a given sequence of steps of q1 and q2 will result in the same simulated 1-resilient run of A′, regardless of
when and where the simulation is taking place.

146

r := 0
repeat
r := r + 1
if G contains [pi, d, ℓ] for some d then u := 1
else u := 0
v := consi,ℓr .propose(u)

until v = 1

Figure 13.3: Expanded line 63 of Figure 13.2: waiting until G includes a vertex [pi, d, ℓ] for some d. Here G is any
DAG generated by the algorithm in Figure 13.1.

13.2.6 Extracting Ω

The computational component of the reduction algorithm is presented in Figure 13.4. In the component,
every process pi locally simulates multiple runs of a system of 2 processes q1 and q2 that run algorithm
BG(A′), to produce a 1-resilient run of A′ (Figures 13.2 and 13.3). Recall that A′, in its turn, simulates a
run of the original algorithm A, using, instead of D, the values provided by an ever-growing DAG G. In
simulating the part of A′ of process p′i presented in Figure 13.3, q1 and q2 count each access of a consensus
instance consi,ℓr as one local step of p′i that need to be simulated. Also, in BG(A′), when qj is about to
simulate the first step of p′i, qj uses its own input value as an input value of p′i.

For each simulated state S of BG(A′), pi periodically checks whether the state of A in S is deciding,
i.e., whether some process has decided in the state of A in S. As we show, eventually, the same infinite
non-deciding 1-resilient run of A′ will be simulated by all processes, which allows for extracting the output
of Ω.

The algorithm in Figure 13.4 explores solo extensions of q1 and q2 starting from growing prefixes. Since,
by property (BG0) of BG-simulation (Section 13.2.4), a run of BG(A′) in which both q1 and q2 participate
infinitely often simulates a run of A′ in which every pj ∈ {p′1, . . . , p′n participates infinitely often, and, by
Theorem 37, such a run will produce a fair and thus deciding run of A. Thus, if there is an infinite non-
deciding run simulated by the algorithm in Figure 13.2, it must be a run produced by a solo extension of q1
or q2 starting from some finite prefix.

Lemma 17 The algorithm in Figure 13.4 eventually forever executes lines 73–77.

Proof Consider any run of the algorithm in Figures 13.1, 13.3 and 13.4. Let F be the failure pattern of
that run. Let G be the infinite limit DAG approximated by the algorithm in Figure 13.1. By contradiction,
suppose that lines 73–77 in Figure 13.4 never block pi.

Suppose that for some initial J0, the call of explore(J0 ,σ0) performed by pi in line 69 never returns.
Since the cycle in lines 73–77 in Figure 13.4 always terminates, there is an infinite sequence of recursive
calls explore(J0,σ0), explore(J0 ,σ1), explore(J0 ,σ2), . . ., where each σℓ is a one-step extension of σℓ−1.
Thus, there exists an infinite never deciding schedule σ̃ such that the run of BG(A′) based on σ̃ and J0
produces a never-deciding run of A′. Suppose that both q1 and q2 appear in σ̃ infinitely often. By property
(BG0) of BG-simulation (Section 13.2.4), a run of BG(A′) in which both q1 and q2 participate infinitely of-
ten simulates a run of A′ in which every pj ∈ {p′1, . . . , p′n} participates infinitely often, and, by Theorem 37,
such a run will produce a fair and thus deciding run of A — a contradiction.

Thus, if there is an infinite non-deciding run simulated by the algorithm in Figure 13.2, it must be a run
produced by a solo extension of q1 or q2 starting from some finite prefix. Let σ̄ be the first such prefix in the

147

67 for all binary 2-vectors J0 do
{ For all possible consensus inputs for q1 and q2 }

68 σ0 := the empty string
69 explore(J0,σ0)

70 function explore(J,σ)
71 for all qj = q1, q2 do
72 ρ := empty string
73 repeat
74 ρ := ρ · qj
75 let p′ℓ be the process that appears the least in SCHA′(J,σ · ρ)
76 Ω−output := pℓ
77 until STA(J,σ · ρ) is decided
78 explore(J,σ · q1)
79 explore(J,σ · q2)

Figure 13.4: Computational component of the reduction algorithm: code for each process pi. Here STA(J,σ) denotes
the state of A reached by the partial run of A′ simulated in the partial run of BG(A′) with schedule σ and input state
J , and SCHA′(J,σ) denotes the corresponding schedule of A′.

order defined by the algorithm in Figure 13.2 and qℓ be the first process whose solo extension of σ is never
deciding. Since the cycle in lines 73–77 always terminates, the recursive exploration of finite prefixes σ
in lines 78 and 79 eventually reaches σ̄, the algorithm reaches line 72 with σ = σ̄ and qj = qℓ. Then the
succeeding cycle in lines 73–77 never terminates — a contradiction.

Thus, for all inputs J0, the call of explore(J0,σ0) performed by pi in line 69 returns. Hence, for every
finite prefix σ, any solo extension of σ produces a finite deciding run of A. We establish a contradiction, by
deriving a wait-free algorithm that solves consensus among q1 and q2.

Let G̃ be the infinite limit DAG constructed in Figure 13.1. Let β be a map from vertices of G̃ to N
defined as follows: for each vertex [pi, d, ℓ] in G, β([pi, d, ℓ]) is the value of variable r at the moment when
any run of A′ (produced by the algorithm in Figure 13.2) exits the cycle in Figure 13.3, while waiting until
[pi, d, ℓ] appears in G. If there is no such run, β([pi, d, ℓ]) is set to 0. Note that the use of consensus implies
that if in any simulated run of A′, [pi, d, ℓ] has been found after r iterations, then β([pi, d, ℓ]) = r, i.e., β is
well-defined.

Now we consider an asynchronous read-write algorithm A′
β that is defined exactly like A′, but instead of

going through the consensus invocations in Figure 13.3, A′
β performs β([pi, d, ℓ]) local steps. Now consider

the algorithm BG(A′
β) that is defined exactly as BG(A′) except that in BG(A′

β), q1 and q2 BG-simulate
runs of A′

β . For every sequence σ of steps of q1 and q2, the runs of BG(A′) and BG(A′
β) agree on the

sequence of steps of p′1, . . . , p
′
n in the corresponding runs of A′ and A′

β , respectively. Moreover, they agree
on the runs of A resulting from these runs of A′ and A′

β. This is because the difference between A′ and A′
β

consist only in the local steps and does not affect the simulated state of A.
We say that a sequence σ of steps of q1 and q2 is deciding with J0, if, when started with J0, the run of

BG(A′
β) produces a deciding run of A. By our hypothesis, every eventually solo schedule σ is deciding

for each input J0. As we showed above, every schedule in which both q1 and q2 appear sufficiently often is
deciding by property (BG0) of BG-simulation. Thus, every schedule of BG(A′

β) is deciding for all inputs.
Consider the trees of all deciding schedules of BG(A′

β) for all possible inputs J0. All these trees have
finite branching (each vertex has at most 2 descendants) and finite paths. By König’s lemma, the trees are

148

finite. Thus, the set of vertices of G̃ used by the runs of A′ simulated by deciding schedules of BG(A′
β) is

also finite. Let Ḡ be a finite subgraph of G̃ that includes all vertices of G̃ used by these runs.
Finally, we obtain a wait-free consensus algorithm for q1 and q2 that works as follows. Each qj runs

BG(A′
β) (using a finite graph Ḡ) until a decision is obtained in the simulated run of A. At this point, qj

returns the decided value. But BG(A′
β) produces only deciding runs of A, and each deciding run of A

solves consensus for inputs provided by q1 and q2 — a contradiction. ✷Lemma 17

Theorem 38 In all environments E , if a failure detector D can be used to solve consensus in E , then Ω is
weaker than D in E .

Proof Consider any run of the algorithm in Figures 13.1, 13.3 and 13.4 with failure pattern F .
By Lemma 17, at some point, every correct process pi gets stuck in lines 73–77 simulating longer and

longer qj-solo extension of some finite schedule σ with input J0. Since, processes p1, . . . , pn use a series of
consensus instances to simulate runs of A′ in exactly the same way, the correct processes eventually agree
on σ and qj .

Let e be the sequence of process identifiers in the 1-resilient execution of A′ simulated by q1 and q2 in
schedule σ · (qj) with input J0. Since a 2-process BG-simulation produces a 1-resilient run of A′, at least
n− 1 simulated processes in p′1, . . . , p

′
n appear in e infinitely often. Let U (|U | ≥ n− 1) be the set of such

processes.
Now we show that exactly one correct (in F) process appears in e only finitely often. Suppose not,

i.e., correct(F) ⊆ U . By Theorem 37, the run of A′ simulated a far run of A, and, thus, the run must be
deciding — a contradiction. Since |U | ≥ n − 1, exactly one process appears in the run of A′ only finitely
often. Moreover, the process is correct.

Thus, eventually, the correct processes in F stabilize at simulating longer and longer prefixes of the
same infinite non-deciding 1-resilient run of A′. Eventually, the same correct process will be observed to
take the least number of steps in the run and output in line 76 — the output of Ω is extracted. ✷Theorem 38

13.3 Bibliographic Notes

Chandra et al. derived the first “weakest failure detector” result by showing that Ω is necessary to solve
consensus in the message-passing model in their fundamental paper [18]. The result was later generalized
to the read-write shared memory model [68, 40].

The proof technique in [18] establishes a framework for determining the weakest failure detector for
any problem. The reduction algorithm of [18] works as follows. Let D be any failure detector that can be
used to solve consensus. Processes periodically query their modules of D, exchange the values returned by
D, and arrange the accumulated output of the failure detector in the form of ever-growing directed acyclic
graphs (DAGs). Every process periodically uses its DAG as a stimulus for simulating multiple runs of the
given consensus algorithm. It is shown in [18] that, eventually, the collection of simulated runs will include
a critical run in which a single process p “hides” the decided value, and, thus, no extension of the run can
reach a decision without cooperation of p. As long as a process performing the simulation observes a run
that the process suspects to remain critical, it outputs the “hiding” process identifier of the “first” such run
as the extracted output of Ω. The existence of a critical run and the fact that the correct processes agree on
ever-growing prefixes of simulated runs imply that, eventually, the correct processes will always output the
identifier of the same correct process.

149

Crucially, the existence of a critical run is established in [18] using the notion of valence [30]: a simu-
lated finite run is called v-valent (v ∈ {0, 1}) if all simulated extensions of it decide v. If both decisions 0
and 1 are “reachable” from the finite run, then the run is called bivalent. Recall that in [30], the notion of
valence is used to derive a critical run, and then it is shown that such a run cannot exist in an asynchronous
system, implying the impossibility of consensus. In [18], a similar argument is used to extract the output of
Ω in a partially synchronous system that allows for solving consensus. Thus, in a sense, the technique of
[18] rehashes arguments of [30]. In contrast, in this chapter we derive Ω based on the very fact that 2-process
wait-free consensus is impossible.

The technique presented in this chapter builds atop two fundamental results. The first is the celebrated
BG-simulation [12, 14] that allows k + 1 processes simulate, in a wait-free manner, a k-resilient run of any
n-process asynchronous algorithm. The second is a brilliant observation made by Zieliński [96] that any run
of an algorithm A using a failure detector D induces an asynchronous algorithm that simulates (possibly
unfair) runs of A. The recursive structure of the algorithm in Figure 13.4 is also borrowed from [96].
Unlike [95], however, the reduction algorithm of this chapter assumes the conventional read-write memory
model without using immediate snapshots [13]. Also, instead of growing ”precedence” and ”detector” maps
of [96], this chapter uses directed acyclic graphs á la [18].

A related problem is determining the weakest failure detector for a generalization of consensus, (n, k)-
set agreement, in which n processes have to decide on at most k distinct proposed values. The weakest
failure detector for (n, 1)-set agreement (consensus) is Ω. For (n, n − 1)-set agreement (sometimes called
simply set agreement in the literature), it is anti-Ω, a failure detector that outputs, when queried, a process
identifier, so that some correct process identifier is output only finitely many times [96]. Finally, the general
case of (n, k)-set agreement was resolved by Gafni and Kuznetsov [36] using an elaborated and extended
version of the technique proposed in this chapter.

A survey on the literature on failure detectors is presented in [31].

150

Chapter 14

Implementing Ω in an eventually
synchronous
shared memory system

14.1 Introduction

This chapter presents a simple algorithm that constructs an omega object in a system of n asynchronous
processes that cooperate by reading and writing 1WMR regular registers.

An impossibility Let us first observe that, differently from the alpha objects, an omega object cannot be
implemented from atomic registers in a pure asynchronous system.

Theorem 39 There is no algorithm that constructs an omega object in a system of n asynchronous processes
that communicate by reading and writing atomic registers.

Proof The proof is by contradiction. Let us assume that there is an algorithm A that implements omega in
a system of n asynchronous processes that communicate by reading and writing atomic registers. We have
seen in the previous chapter that regular registers allows constructing an alpha object. As atomic registers
are stronger than regular registers, it follows that atomic registers allows building an alpha object. Moreover,
the algorithm presented in chapter ??(9) constructs a consensus object for any number n of processes from
an alpha object and an omega object. It follows that a n process consensus object can be built from atomic
registers. This contradicts the fact that atomic registers have consensus number 1. ✷Theorem 39

An additional assumption The previous theorem indicates that additional assumptions on the system are
necessary in order to build an omega object. This chapter considers the following assumption and shows
that it is sufficient to build omega from 1WMR regular registers.

[Eventually synchronous shared memory system] There is a time after which there are a
positive lower bound and an upper bound for a process to execute a local step, a read or a write
of a shared register.

151

It is important to notice that the values of the lower and upper bounds, and the time after which these
values become the actual lower and upper bounds are not known. The (finite but unknown) time after which
the previous property is satisfied is called global stabilization time (GST).

14.2 An omega construction

14.2.1 Underlying principle

The algorithm that, based on the previous assumption on the system behavior, build an eventual leader oracle
is described in Figure 14.1. Its underlying design principles is the following: each process pi strives to elect
as the leader the process with the smallest identity that it considers as being alive. As a process pi never
considers itself as crashed, at any time, the process it elects as its current leader has necessarily an identity
j such that j ≤ i. The identity of the process that pi considers leader is stored in a local variable leaderi.

when leader() is invoked by pi: return (leaderi)

Background task T :
(1) while (true) do
(2) if (leaderi = i) then PROGRESS[i]← PROGRESS[i] + 1 end if;
(3) l clocki ← l clocki + 1;
(4) if (l clocki = next checki) then
(5) then has ldi ← false;
(6) for j from 1 to (i− 1) do
(7) if (PROGRESS[j] > lasti[j]) then
(8) lasti[j]← PROGRESS[j];
(9) if (leaderi ̸= j) then delayi ← 2× delayi end if;
(10) next checki ← next checki + delayi;
(11) leaderi ← j;
(12) has ldi ← true ;
(13) exit for loop
(14) end if
(15) end for;
(16) if (¬has ldi) then leaderi ← i end if
(17) end if
(18) end while

Figure 14.1: Building omega in an eventually synchronous shared memory system

14.2.2 Shared memory

The shared memory is composed of an array of n reliable 1WMR regular registers containing integer values.
This array, denoted PROGRESS[1..n], is initialized to [0, . . . , 0]. Only pi can write PROGRESS[i].
Any process can read any register PROGRESS[j]. The register PROGRESS[i] is used by pi to inform
the other processes about its status.

152

14.2.3 Process behavior

First, when a process pi considers it is leader, it repeatedly increments its register PROGRESS[i] in order
to let the other processes know that it has not crashed (while loop and line 2).

Whether it is or not a leader, a process pi increments a local variable l clocki (initialized to 0) at each
step of the infinite while loop (line 3). This variable can be seen as a local clock that pi uses to measure its
local progress.

It is possible that pi be very rapid and increments very often l clocki, while its current leader pj is slow
and two of its consecutive increments of PROGRESS[j] are separated by a long period of time. This can
direct pi to suspect pj to have crashed, and consequently to select another leader with a possibly greater
id. To prevent such a bad scenario from occurring, each process pi handles another local variable denoted
next checki (initialized to an arbitrary positive value, e.g., 1). This variable is used by pi to compensate the
possible drift between l clocki and PROGRESS[j]. More precisely, pi tests if its leader has changed only
when l clocki = next checki. Moreover, pi increases the duration (denoted delayi and initialized to any
positive value) between two consecutive checks (lines 9) when it discovers that its leader has changed. In
all cases, it schedules the the logical date next checki at which it will check again for leadership (line 10).

So, the core of its algorithm (lines 6-14), that consists for pi in checking if its leader has changed and
a new leader has to be defined, is executed only when l clocki = next checki. For doing this check, each
pi maintains a local array lasti[1..(i − 1)] such that lasti[j] stores the last value of PROGRESS[j] it has
previously read (line 8). Moreover, when it tries to define its leader, pi checks the processes always starting
from p1 until pi−1 (line 6). It stops at the first process pj that did some progress since the last time pi read
PROGRESS[j] (line 7). If there is such a process pj , pi considers it as its (possibly) new leader (line 11).
If pj was not its previous leader, pi considers that it previously did a mistake and consequently increases the
delay separating two checks for leadership (line 9). In all cases, it then updates the logical date at which it
will test again for leadership (increase of next checki at line 10). If, pi sees no progress from any pj such
that j < i, it considers itself as the leader (line 16).

14.2.4 A property

This algorithm enjoys a very nice property: it is timer-free. No process is required to use a physical local
clock. This means that, while the correctness of the algorithm rests on a behavioral property of the under-
lying shared memory system (eventual synchrony), benefiting from that property does not require a special
equipment (such as local physical clocks).

14.3 Proof of the algorithm

The validity and termination properties defining the eventual leader service are easy and left to the reader.
We focus here only on the proof of the eventual leadership property.

Theorem 40 Let us assume that there is a time after which there are a lower bound and an upper bound for
any process to execute a local step, a read or a write of a shared register. The algorithm described in Figure
14.1 eventually elects a single leader that is a correct process.

Proof Let t1 be the time after with there are a lower bound and an upper bound on the time it take for a
process to execute a local step, a read or a write of a shared register (global stabilization time). Moreover,
let t2 be the time after which no more process crashes. Finally let t = max(t1, t2), and pℓ be the correct
process with the smallest id. We show that, from some time after t, pℓ is elected by any process pi.

153

Let us first observe that there is a time t′ > t after which no process pk, such that k < ℓ, competes with
the other processes to be elected as a leader. This follows from the following observations:
- After t, pk has crashed and consequently PROGRESS[k] is no longer increased.
- After t, for each process pi, there is a time after which the predicate lasti[k] = PROGRESS[k] remains
permanently satisfied, and consequently, pi never executes the lines 8-13 with j = k, from which we con-
clude that pk can no longer be elected as a leader by any process pi.

It follows that after some time t′ > t, as no process pk (k < ℓ) increases its clock PROGRESS[k],
pℓ always exits the for loop (lines 6-15) with has ldℓ = false , and considers itself as the permanent and
definitive leader (line 16). Consequently, from t′, pℓ increases PROGRESS[ℓ] each time it executes the
while loop (lines 1-18).

We claim that there is a time after which, each time a process pi executes the for loop (lines 6-15), we
have PROGRESS[ℓ] > lasti[ℓ] (i.e., pi does not miss increases of PROGRESS[ℓ]). It directly follows
from this claim, line 11 (where leaderi is now always set to ℓ), and the fact that all processes pk such that
k < ℓ have crashed, that pi always considers pℓ as its leader, which proves the theorem.

Proof of the claim. To prove the claim, let us define two critical values. Both definitions consider durations
after t′, i.e., after the global stabilization time (so, both values are bounded).

• Let ∆w(ℓ) be the longest duration, after t′, separating two increases of PROGRESS [ℓ].

• Let ∆r(i, ℓ) be the shortest duration, after t′, separating two consecutive reading by pi of PROGRESS [ℓ].

We have to show that, after some time and for any pi, ∆r(i, ℓ) > ∆w(ℓ) remains permanently true, i.e., we
have to show that after some time the predicate lasti[ℓ] < PROGRESS[ℓ] is true each time it is evaluated
by pi.

Let us first observe that, as pℓ continuously increases PROGRESS[ℓ], the locally evaluated predicate
lasti[ℓ] < PROGRESS[ℓ] is true infinitely often. If lasti[ℓ] < PROGRESS[ℓ] is true while leaderi ̸= ℓ,
pi doubles the duration delayi (line 9) before which it will again check for a leader (line 4). This ensures
that eventually we will have a time after which ∆r(i, ℓ) > ∆w(ℓ) remains true forever. End of the proof of
the claim. ✷Theorem 40

14.4 Discussion

14.4.1 Write optimality

In addition to its design simplicity, and its timer-free property, the proposed algorithm has another notewor-
thy property related to efficiency, namely, it is write-optimal. This means that there is a finite time after
which only one process keeps on writing the shared memory. Let us observe that this is the best that can be
done as at least one process has to write forever the shared memory (if after some time no process writes the
shared memory, there is no way for the processes to know whether the current leader has crashed or is still
alive).

Theorem 41 The algorithm described in Figure 14.1 is write-optimal.

Proof During the “anarchy” period before the global stabilization time, it is possible that different processes
have different leaders, and that each process has different leaders at different times. Theorem 40 has shown

154

that such an anarchy period always terminates when the underlying shared memory system satisfies the
“eventually synchronous” property.

To show that the algorithm is write-optimal, let us first observe that, each time a process pj considers it
is a leader, it increments its global clock PROGRESS[j]. It follows that when several processes consider
they are leaders, several shared registers PROGRESS[−] are increased. Interestingly, after the common
correct leader has been elected, a single 1WMR register keeps on being increased. This means that a single
shared register keeps growing, while the (n − 1) other shared registers stop growing. Consequently, the
algorithm is communication-efficient. It follows that it is optimal with respect to this criterion (as at least
one process has to continuously inform the others that it is alive). ✷Theorem 41

14.4.2 Another synchrony assumption

The reader can also check that the “eventual synchrony” assumption can be replaced by the following as-
sumption: there is a time after which there is an upper bound τ on the ratio of the relative speed of any two
non-crashed processes. Such a bound-based assumption can be seen as another way to place a limitation
on the uncertainty created by the combined effect of asynchrony and failures that allows building an omega
object.

14.5 Bibliographic notes

message-passing impl of omega

Guerraoui-Raynal 2005.

155

156

Chapter 15

Shared-Memory Adversaries

Until now assumed that failures are “uniform”: processes are equally probable to fail and a failure of one
process does not affect reliability of the others. In real systems, however, processes may not be equally
reliable. Moreover, failures may be correlated because of software or hardware features shared by subsets
of processes. In this chapter, we survey recent results addressing the question of what can and what cannot
be computed in systems with non-identical and non-independent failures.

15.1 Non-uniform failure models

A failure model describes the assumptions on where and when failures might occur in a distributed system.
The classical “uniform” failure model assumes that processes fail with equal probabilities, independently of
each other. This enables reasoning about the maximal number of processes that may, with a non-negligible
probability, fail in any given execution of the system. It is natural to ask questions of the kind: what
problems can be solved t-resiliently, i.e., assuming that at most t processes may fail. In particular, the wait-
free ((n−1)-resilient, where n is the number of processes) model assumes that any subset of processes may
fail.

However, in real systems, processes do not always fail in the uniform manner. Processes may be un-
equally reliable and prone to correlated failures. A software bug makes all processes using the same build
vulnerable, a router’s failure may makes all processes behind it unavailable, a successful malicious attack
on a given process increases the chances to compromise processes running the same software, etc. Thus,
understanding how to deal with non-uniform failures is crucial.

Adversaries. Consider a system of three processes, p, q, and r. Suppose that p is very unlikely to fail,
and otherwise, all failure patterns are allowed. Since we only exclude executions in which p fails, the set of
correct processes in any given execution must belong to {p, pq, pr, pqr}1.

Now we give an example of correlated failures. Suppose that p and q share a software component x, p
and r share a software component y, and q and r are built atop the same hardware platform z (Figure 15.1).
Further, let x, y, and z be prone to failures, but suppose that it is very unlikely that two failures occur in the
same execution. Hence, the possible sets of correct processes in our system are {pqr, p, q, r}.

The notion of a generic adversary introduced by Delporte et al. [25] intends to model such scenarios.
An adversary A is defined as a set of possible correct process subsets. E.g., the t-resilient adversary At-res

1For brevity, we simply write pqr when referring to the set {p, q, r}.

157

q

p r

x

y

z

Figure 15.1: A system modeled by the adversary {pqr, p, q, r}: p and q share component x, p and r share
component y, and q and r run atop the same hardware platform z.

in a system of n processes consists of all sets of n − t or more processes. We say that an execution is
A-compliant if the set of processes that are correct in that execution belongs to A. Thus, an adversary A
describes a model consisting of A-compliant executions.

The formalism of adversaries [25] assumes that processes fail only by crashing, and adversaries only
specify the sets of processes that may be correct in an execution, regardless of the timing of failures. Of
course, this sorts out many kinds of possible adversarial behavior, such as malicious attacks or timing fail-
ures. However, it is probably the simplest model that still captures important features of non-uniform fail-
ures.

Distributed tasks. In this chapter, we focus on a class of distributed-computing problems called tasks.
A task can be seen as a distributed variant of a function from classical (centralized) computing: given a
distributed input (an input vector, specifying one input value for every process) the processes are required
to produce a distributed output (an output vector, specifying one output value for every process), such that
the input and output vectors satisfy the given task specification.

The classical theory of computational complexity theory categorizes functions based on their inherent
difficulty (e.g., with respect to solving them on a Turing machine). In the distributed setting, the difficulty
in solving a task also depends on the adversary we are willing to consider. There are tasks that can be
trivially solved on a Turing machine, but are not solvable in the presence of some distributed adversaries.
For example, the fundamental task of consensus, in which the processes must agree on one of the input
values, cannot be solved assuming the 1-resilient adversary A1-res [30, 69]. More generally, the task of k-set
consensus [20], where every correct process is required to output an input value so that at most k different
values are output, cannot be solved in the presence of Ak-res [48, 82, 12].

Most of this chapter deals with colorless tasks (also called convergence tasks [14]). Informally, colorless
tasks allow every process to adopt an input or output value from any other participating process. Colorless
tasks include consensus [30], k-set consensus [20] and simplex agreement [49].

The relative power of an adversary. This chapter primarily addresses the following question. Given a
task T and an adversary A, is T solvable in the presence of A?

Intuitively, the more sets an adversary comprises, the more executions our system may expose, and, thus,
the more powerful is the adversary in “disorienting” the processes. In this sense, the wait-free adversary
Awf = An−1-res is the most powerful adversary, since it describes the set of all possible executions.

In contrast, a “singleton” adversary A = {S} that consists of only one set S ⊆ P is very weak. For
example, we can use any process in S as the “leader” that never fail. This allows us to solve consensus or

158

implement any sequential data type [44].
But in general, there are exponentially many adversaries defined for n processes that are not related by

containment. Therefore, it is difficult to say a priori which of two given adversaries is stronger.

Superset-closed adversaries. We start with recalling the model of dependent failures proposed by Jun-
queira and Marzullo [57], defined in terms of cores and survivor sets. In brief, a survivor set is a minimal
subset of processes that can be the set of correct processes in some execution, and a core is a minimal set of
processes that do not all fail in any execution.

We show that, in fact, the formalism of [57] describes a special class of superset-closed adversaries:
every superset of an element of such an adversary A is also an element of A. The minimal elements of A
(no subset of which are in A) are the survivor sets of the resulting model.

It turns out that the power of a superset-closed adversary A in solving colorless tasks is precisely char-
acterized by the size of its minimal core, i.e., the minimal-cardinality set of processes that cannot all fail
in any A-compliant execution. A superset-closed adversary with minimal core size c allows for solving a
colorless task T if and only if T can be solved (c − 1)-resiliently. In particular, if c = 1, then any task can
be solved in the presence of A, and if c = n, then A only allows for solving wait-free solvable tasks. Thus,
all superset-closed adversaries can be categorized in n classes, based on their minimal core sizes.

We present two ways of deriving this result: first, using the elements of modern topology (proposed
by Herlihy and Rajsbaum [47]) and second, through shared-memory simulations (proposed by Gafni and
Kuznetsov [36]).

Characterizing generic adversaries. The dependent-failure formalism of [57] is however not expressive
enough to capture the task solvability in generic non-uniform failure models. It is easy to construct an
adversary that has the minimal core size n but allows for solving tasks that can cannot be wait-free solved.
One example is the “bimodal” adversary {pqr, p, q, r} (Figure 15.1) that allows for solving 2-set consensus.

Therefore, to characterize the power of a generic adversary, we need a more sophisticated criterion than
the minimal core size. Surprisingly, such a criterion, that we call set consensus power, is not difficult to
find. Suppose that we can partition an adversary A into k sub-adversaries, each powerful enough to solve
consensus. We conclude that A allows for solving k-set consensus: simply run k consensus algorithms in
parallel, each assuming a distinct sub-adversary. Moreover, we show that the set consensus power of A,
defined as the minimal such number of sub-adversaries, precisely characterizes the power of A in solving
colorless tasks.

Therefore, generic adversaries defined on n processes can still be split into n equivalence classes. Each
class j consists of adversaries of set consensus power j that agree on the set of colorless tasks they allow
for solving: namely, tasks that can be solved (j − 1)-resiliently and not j-resiliently. In particular, class n
contains adversaries that only allow for solving tasks that can be solved wait-free, and class 1 allows for
solving consensus and, thus, any task.

In this chapter, we discuss several approaches to model non-uniform failures: dependent failure model
of Junqueira and Marzullo [57], adversaries of Delporte et alii [25], and asymmetric progress conditions by
Imbs et alii [54].

Then we present a complete characterization of superset-closed adversaries. The result is first shown
using elements of combinatorial topology [47] and then through simple shared-memory simulations [36].

We then characterize generic (not necessarily superset-closed) adversaries using the notion of set con-
sensus power and relate it with the disagreement power proposed by Delporte et alii [25].

159

We conclude with a brief overview of open questions, primarily related to solving generic (not necessar-
ily colorless) tasks in the presence of generic (not necessarily superset-closed) adversaries.

15.2 Background

In this section, we briefly state our system model and recall the notion of a distributed task and two important
constructs used in this chapter: Commit-Adopt and BG-simulation.

15.2.1 Model

We consider a system Π of n processes, p1, . . . , pn, that communicate via reading and writing in the shared
memory. We assume that the system is asynchronous, i.e., relative speeds of the processes are unbounded.
Without loss of generality, we assume that processes share an atomic snapshot memory [1], where every
process may update its dedicated element and take atomic snapshot of the whole memory.

A process may only fail by crashing, and otherwise it must respect the algorithm it is given. A correct
process never crashes.

15.2.2 Tasks

In this chapter, we focus on a specific class of distributed computing problems, called tasks [49]. In a
distributed task [49], every participating process starts with a unique input value and, after the computation,
is expected to return a unique output value, so that the inputs and the outputs across the processes satisfy
certain properties. More precisely, a task is defined through a set I of input vectors (one input value for each
process), a set O of output vectors (one output value for each process), and a total relation ∆ : I <→ 2O that
associates each input vector with a set of possible output vectors. An input ⊥ denotes a not participating
process and an output value ⊥ denotes an undecided process.

For example, in the task of k-set consensus, input values are in {⊥, 0, . . . , k}, output values are in
{⊥, 0, . . . , k}, and for each input vector I and output vector O, (I,O) ∈ ∆ if the set of non-⊥ values in O
is a subset of values in I of size at most k. The special case of 1-set consensus is called consensus [30].

We assume that every process runs a full-information protocol: initially it writes its input value and then
alternates between taking snapshots of the memory and writing back the result of its latest snapshots. After
a certain number of such asynchronous rounds, a process may gather enough state to decide, i.e., i.e., to
produce an irrevocable non-⊥ output value.

In colorless task (also called convergence tasks [14]) processes are free to use each others’ input and
output values, so the task can be defined in terms of input and output sets instead of vectors.2 The k-set
consensus task is colorless.

Note that to solve a colorless task, it is sufficient to find a protocol (a decision function) that allows just
one process to decide. Indeed, if such a protocol exists, we can simply convert it into a protocol that allows
every correct process to decide: every process simply applies the decision function to the observed state of
any other process and adopts the decision.

2Formally, let val(U) denote the set of non-⊥ values in a vector U . In a colorless task, for all input vectors I and I ′ and all
output vectors O and O′, such that (I,O) ∈ ∆, val(I) ⊆ val(I ′), val(O′) ⊆ val(O), we have (I ′, O) ∈ ∆ and (I,O′) ∈ ∆.

160

15.2.3 The Commit-Adopt protocol

One tool extensively used in this chapter is the commit-adopt abstraction (CA) [32]. CA exports one opera-
tion propose(v) that returns (commit , v′) or (adopt , v′), for v′, v ∈ V , and guarantees that

(a) every returned value is a proposed value,

(b) if only one value is proposed then this value must be committed,

(c) if a process commits on a value v, then every process that returns adopts v or commits v, and

(d) every correct process returns.

The CA abstraction can be implemented wait-free [32]. Moreover, CA can be viewed as a way to establish
safety in shared-memory computations.

For example, consider a protocol where every processes goes through a series of instances of commit-
adopt protocols, CA1, CA2, . . ., one by one, where each instance receives a value adopted in the previous
instance as an input (the initial input value for CA1). One can easily see that once a value v is committed
in some CA instance, no value other than v can ever be committed (properties (a) and (c) above). One the
other hand, if at most one value is proposed to some CA instance, then this value must be committed by
every process that takes enough steps (property (b) above).

This algorithm can be viewed as a safe version of consensus: every committed value is a proposed value
and no two processes commit on different values (properties (a), (b) and (c) above). Given that every correct
process goes from one CA instance to the other as long as it does not commit (property (d) above), we can
boost the liveness guarantees of this protocol using external oracles.

In fact, the algorithm per se guarantees termination in every obstruction-free execution, i.e., assuming
that eventually at most one process is taking steps. Moreover, we can build a consensus algorithm that
terminates almost always if we allow processes to toss coins when choosing an input value for the next
CA instance [8]. Also, if we allow a process to access an oracle (e.g., the Ω failure detector of [18]) that
eventually elects a correct leader process, we get a live consensus algorithm.

15.2.4 The BG-simulation technique.

Another important tool used in this chapter is BG-simulation [12, 14]. BG-simulation is a technique by
which k+1 processes s1, . . . , sk+1, called simulators, can wait-free simulate a k-resilient (Ak-res-compliant)
execution of any protocol Alg on m processes p1, . . . , pm (m > k). The simulation guarantees that each
simulated step of every process pj is either agreed upon by all simulators, or one less simulator participates
further in the simulation for each step which is not agreed on.

The central building block of the simulation is the BG-agreement protocol. BG-agreement reminds
consensus: processes propose values and agree one of the proposed values at the end. Indeed, the BG-
agreement protocol ensures safety of consensus—every decided value was previously proposed, and no two
different values are decided— but not liveness. If one of the simulators slows down while executing BG-
agreement, the protocol’s execution at other correct simulators may “block” until the slow simulator finishes
the protocol. If the slow simulator is faulty, no other simulator is guaranteed to decide.

Suppose the simulation tries to promote m > k simulated processes in a fair (e.g., round-robin) way. As
long there is a live simulator, at least m−k simulated processes performs infinitely many steps of Alg in the
simulated execution.

161

Recently the technique of BG-simulation was extended to show that any colorless task that can be solved
assuming the (k − 1)-resilient adversary can also be solved using read-write registers and k-set consensus
objects [33].

15.3 Non-uniform failures in shared-memory systems

In this section, we overview several approaches to model non-uniform failures: dependent failure model of
Junqueira and Marzullo [57], adversaries of Delporte et alii [25], and asymmetric progress conditions by
Imbs et alii [54] and Taubenfeld [85].

15.3.1 Survivor Sets and Cores

Junqueira and Marzullo [58, 57] proposed to model non-uniform failures using the language of survivor sets
and cores. A survivor set S ⊆ Π if a set of processes such that:

(a) in some execution, S is the set of correct processes, and

(b) S is minimal: for every proper subset S′ of S, there is no execution in which S′ is the set of correct
processes.

A collection S of survivor sets describes a system such that the set of correct processes in every execution
contains a set in S .

Respectively, a core C is a set of processes such that:

(a) in every execution, some process in C is correct, and

(b) C is minimal: for every proper subset C ′ of C , there is an execution in which every process in C ′

fails.

Thus, a core is a minimal set of processes that cannot be all faulty in any execution of our system. Note that
the set of cores is unambiguously determined by the set of survivor sets.

A core is actually a minimal hitting set of the set system built of survivor sets, and a core of smallest
size is a corresponding minimum hitting set. Determining minimum hitting set of a set system is known to
be NP-complete [59].

The language of cores [58, 57] proved to be convenient in understanding the ability of a system with
non-uniform failures to solve consensus or build a fault-tolerant replicated storage.

15.3.2 Adversaries

A more general way to model non-uniform failures was proposed by Delporte et al. [25]. Formally, an
adversary defined for a set of processes Π is a non-empty set of process subsets A ⊆ 2Π . We say that an
execution is A-compliant if the correct set, i.e., the set of correct processes, in that execution belongs to A.
Thus, assuming an adversary A, we only consider the set of A-compliant executions. 3 By convention, we
assume that in every execution, at least one process is correct, i.e., no adversary contains ∅.

3Note that in the original definition [25], an adversary is defined as a collection of faulty sets, i.e., the sets of processes that can
fail in an execution. For convenience, we chose here an equivalent definition based on correct sets.

162

Given a task T and an adversary A, we say that T is A-resiliently solvable if there is a protocol such
that in every execution, the outputs match the inputs with respect to the specification of T , and in every
A-compliant execution, each correct process eventually produces an output.

It is easy to see that the language of survivor sets of [57] describes a special class of superset-closed
adversaries. Formally, the set SC of superset-closed adversaries consists of all A such that for all S ∈ A
and S ⊆ S′ ⊆ Π, we have S′ ∈ A.

For example, consider the t-resilient adversary At-res = {S ⊆ Π, |S| ≥ n − t}. By definition, At-res ∈
SC. The survivor sets of At-res are all sets of n−t processes, and the cores are all sets of t+1 processes. The
(n − 1)-resilient adversary AWF = An−1-res is also called wait-free. An AWF -resilient task solution must
ensure that every process obtains an output in a finite number of its own steps, regardless of the behavior of
the rest of the system.

Another example ALp = {S ⊆ Π|p ∈ S} ∈ SC describing a system in which p never fails. ALp has
one survivor set {p} and one core {p}. Intuitively, p may then act as a correct leader in a consensus protocol.
Thus, every task can be solved in the presence of ALp [44].

The k-obstruction-free adversary Ak-OF is defined as {S ⊆ Π | 1 ≤ |S| ≤ k}. In particular, AOF =
A1-OF allows for solving consensus [29]. Clearly, Ak-OF for 1 ≤ k < n is not in SC.

The “bimodal” adversary {pqr, p, q, r} (Figure 15.1) is not in SC either: it contains the singleton p but
not its supersets pq and pr.

15.3.3 Failure patterns and environments

An adversary is in fact a special case of a failure environment introduced by Chandra et alii [18]. An
environment E is a set of failure patterns. For a given run, a failure pattern F is a map that associates each
time value t ∈ T with a set of processes crashed by time t. The set of correct processes, denoted correct(F)
is thus defined as Π− ∪t∈TF (t).

Since an adversary A only defines sets of correct processes and does not specify the timing of failures,
it can be viewed as a specific environment EA that is closed under changing the timing of failures. More
precisely, EA = {F | correct(F) ∈ A}. Clearly, if F ∈ EA and correct(F) = correct(F ′), then F ′ ∈ EA.

Thus, we can rephrase the statement “task T can be solved A-resiliently” as “task T can be solved in
environment EA”. It is shown in [35] that, with respect to colorless tasks, all environments can be split into n
equivalence classes, and each class j agrees on the set of tasks it can solve: namely, tasks that can be solved
(j−1)-resiliently and not j-resiliently. Therefore, by applying [35], we conclude that each adversary belongs
to one of such equivalence class. However, this characterization does not give us an explicit algorithm to
compute the class to which a given adversary belongs.

15.3.4 Asymmetric progress conditions

Imbs et alii [54] introduced asymmetric progress conditions that allow us to specify different progress guar-
antees for different processes. Informally, for sets of processes X and Y , X ⊆ Y ⊆ Π, (X,Y)-liveness
guarantees that every process in X makes progress regardless of other processes (wait-freedom for processes
in X) and every process in Y −X makes progress if it is eventually the only process in Y −X taking steps
(obstruction-freedom for processes in Y −X).

With respect to solving colorless tasks, it is easy to represent (X,Y)-liveness using the formalism of
adversaries. The equivalent adversary AX,Y consists of all subsets of Π that intersect with X and all sets
{pi}∪S such that pi ∈ Y −X and S ⊆ Π−Y . It is easy to see that a colorless task is (read-write) solvable
assuming (X,Y)-liveness if and only if it is solvable in the presence of AX,Y .

163

Taubenfeld [85] introduced a refined condition that associates each process pi with a set Pi of process
subsets (each containing pi). Then pi is expected to make progress (e.g., output a value in a task solution)
only if the current set of correct processes is in Pi. Similarly, with respect to the question of solvability of
colorless tasks, every such progress condition can be modeled as an adversary, defined simply as the union
∪iPi.

15.4 Characterizing superset-closed adversaries

Intuitively, the size of a smallest-cardinality core of an adversary A, denoted csize(A), is related to its
ability to “confuse” the processes (preventing them from agreement). Indeed, since in every execution, at
least one process in a minimal core C is correct, we can treat C as a collection of leaders. But for a superset-
closed adversary, every non-empty subset of C can be the set of correct processes in C in some execution.
Therefore, intuitively, the system behaves like a wait-free system on c = |C| processes, where c quantifies
the “degree of disagreement” that we can observe among all the processes in the system.

In this section, we show that csize(A) precisely captures the power of A with respect to colorless tasks.
We overview two approaches to address this question, each interesting in its own right: using combinatorial
topology and using shared-memory simulations.

15.4.1 A topological approach

Herlihy and Rajsbaum [47] derived a characterization of superset-closed adversaries using the Nerve Theo-
rem of modern combinatorial topology [10]. A set of finite executions is modeled as a simplicial complex,
a geometric (or combinatorial) structure where each simplex models a set of local states (views) of the
processes resulting after some execution. This allows for reasoning about the power of a model using topo-
logical properties (e.g., connectivity) of simplicial complexes it generates.4

The model of [47] is based on iterated computations: each process pi proceeds in (asynchronous) rounds,
where every round r is associated with a shared array of registers M [r, 1], . . . ,M [r, n]. When pi reaches
round r, it updates M [r, i] with its current view and takes an atomic snapshot of M [r, .]. In the presence of
a superset-closed adversary A, the set of processes appearing in a snapshot should be an element of A. We
call the resulting set of executions the A-compliant iterated model.

Naturally, given an adversary A, it is easy to implement an iterated model with desired properties in the
classical (non-iterated) shared memory model. To implement a round of the iterated model, every process
writes its value in the memory and takes atomic snapshots until all processes in some survivor set (minimal
element in A) are observed to have written their values. The result of this snapshot is then returned. In an
A-compliant execution, this allows for simulating infinitely many iterated rounds.

Surprisingly, we can also use the A-compliant iterated model to simulate an A-compliant execution in
the read-write model where some participating set of processes in A takes infinitely many steps (please
check the wonderful simulation algorithm proposed recently by Gafni and Rajsbaum [37]). In particular,
for the wait-free adversary AWF , the simulation is non-blocking: at least one participating process accepts
infinitely many steps in the simulated execution.

Note that if the simulated A-compliant execution is used for an A-resilient protocol solving a given task,
then we are guaranteed that at least one process obtains an output. But to solve a colorless task it is sufficient
to produce an output for one participating process (all other participants may adopt this output). Thus:

4For more information on the applications of algebraic and combinatorial topology in distributed computing, check Maurice
Herlihy’s lectures at Technion [45].

164

Theorem 42 [37] Let A be a superset-closed adversary. A colorless task can be solved in the A-compliant
iterated model if and only if it can be solved in the A-compliant model.

This result allows us to apply the topological formalism as follows. The set of r-round executions of the
A-compliant iterated model applied to an initial simplex σ generates a protocol complex Kr(σ). By a careful
reduction to the Nerve Theorem [10], Kr(σ) can be shown to be (c− 2)-connected, i.e., Kr(σ) contains no
“holes” in dimensions c−2 or less (any (c−2)-dimensional sphere can be continuously contracted to a point).
The Nerve theorem establishes the connectivity of a complex from the connectivity of its components.

Roughly, the argument of [47] is built by induction on n, the number of processes. For a given adversary
A on n processes with the minimal core size c, the A-compliant protocol complex Kr(σ) can be represented
as a union of protocol complexes, each corresponding to a sub-adversary of A on n− 1 processes with core
size c − 1. By induction, each of these sub-adversaries is at least (c − 3)-connected. Applying the Nerve
theorem, we derive that Kr(σ) is (c − 2)-connected. The base case n = 1 and c = 1 is trivial, since every
non-empty complex is, by definition, (−1)-connected.

Thus, Kr(σ) is (c− 2)-connected. Hence, no task that cannot be solved (c− 1)-resiliently, in particular
(c− 1)-set consensus, allows for an A-resilient solution [49].

Using the characterization of [49], we can reduce the question of A-resilient solvability of a colorless
task T = (I,O,∆) to the existence of a continuous map f from |skelc−1(I)|, the Euclidean embedding of
the (c − 1)-skeleton (the complex of all simplexes of dimension c − 1 and less) of the input complex I , to
|O|, the Euclidean embedding of the output complex O, such that f is carried by ∆, i.e., f(σ) ⊆ ∆(σ).
Indeed, the fact that of Kr(σ) is (c− 2)-connected (and thus d-connected for all 0 ≤ d ≤ c− 2) implies that
every continuous map from d-sphere of Kr(σ) extends to the (d + 1)-disk, for 0 ≤ d ≤ c − 2. Intuitively,
we can thus inductively construct a continuous map from |skelc−1(I)| to |O|, starting from any map sending
a vertex of I to a vertex of O (for d = 0).

On the other hand, it is straightforward to construct an A-resilient protocol solving a colorless task T ,
given a continuous map from the (c − 1)-skeleton of the input complex of T to the output complex of T .
Thus:

Theorem 43 [47] An adversary A ∈ SC with the minimal core size c allows for solving a colorless task
T = (I,O,∆) if and only if there is a continuous map from |skelc−1(I)| to |O| carried by ∆.

Therefore, two adversaries in A,B ∈ SC with the same minimal core size c agree on the set of tasks they al-
low for solving, which is exactly the set of tasks that can be solved (c−1)-resiliently (since csize(A(c−1)-res) =
c).

15.4.2 A simulation-based approach

It is comparatively straightforward to characterize superset-closed adversaries using classical BG-simulation [12,
14], and we present a complete proof below.

Theorem 44 [34] Let A be a superset-closed adversary. A colorless task T is A-resiliently solvable if and
only if T is (c− 1)-resiliently solvable, where c is the minimal core size of A.

Proof Let a colorless task T be (c− 1)-resiliently solvable, and let Pc be the corresponding algorithm. Let
C = {q1, . . . , qc} be a minimal-cardinality core of A (|C| = c).

Let the processes in C BG-simulate the algorithm Pc running on all processes in Π. Here each simulator
qi tries to use its input value of task T as an input value of every simulated process [12, 14]. Since C is a core

165

of A, in every A-compliant execution, at most c − 1 simulators may fail. Since a faulty simulator results
in at most one faulty simulated process, the produced simulated execution is (c − 1)-resilient. Since Pc

gives a (c−1)-resilient solution of T , at least one simulated process must eventually decide in the simulated
execution. The output value is then adopted by every correct process. Moreover, the decided value is based
on the “real” inputs of some processes. Since T is colorless, the decided values are correct with respect to
the input values and, thus, we obtain an A-resilient protocol to solve T .

For the other direction, suppose, by contradiction that there exists an A-resilient protocol PA to solve a
colorless task T , but T is not possible to solve (c− 1)-resiliently.

We claim that A(c−1)-res ⊆ A, i.e., each (c− 1)-resilient execution is A-compliant. Suppose otherwise,
i.e., some set S of n − c + 1 processes is not in A. Since A is superset-closed, no subset of S is in A
(otherwise, S would be in A). No process in S belongs to any set in A, thus, the smallest core of A must
be a subset of Π− S. But |Π− S| = c− 1—a contradiction with the assumption that the size of a minimal
cardinality core of A is c.

Thus, every (c − 1)-resilient execution is also A-compliant, which implies that PA is in fact a (c −
1)-resilient solution to T—a contradiction with the assumption that T is not (c − 1)-resiliently solvable.

✷Theorem 44

Theorem ?? implies that adversaries in SC can be categorized into n equivalence classes, SC1, . . ., SCn,
where class SCk corresponds to cores of size k. Two adversaries that belong to the same class SCk agree
on the set of colorless tasks they are able to solve, and it is exactly the set of all colorless task that can be
solved (k − 1)-resiliently.

15.5 Measuring the Power of Generic Adversaries

Let us come back to the “bimodal” adversary ABM = {pqr, p, q, r} (Figure 15.1). Its only core is {p, q, r}.
Does it mean that ABM only allows for solving trivial (wait-free solvable) tasks? Not really: by splitting
ABM in two sub-adversaries AFF = {pqr} and AOF = {p, q, r} and running two consensus algorithms in
parallel, one assuming no failures (AFF) and one assuming that exactly one process is correct (AOF), gives
us a solution to 2-set consensus.

15.5.1 Solving consensus with ABM

But can we solve more in the presence of ABM? E.g., is there a protocol Alg that solves consensus ABM -
resiliently? We derive that the answer is no by showing how processes, s0 and s1, can wait-free solve
consensus through simulating an ABM -compliant execution of Alg. Initially, the two processes act as BG
simulators [12, 14] trying to simulate an execution of Alg on all three processes p, q, and r. When a simulator
si (i = 0, 1) finds out that the simulation of some step is blocked (which means that the other simulator s1−i

started but has not yet completed the corresponding instance of BG-agreement), si switches to simulating a
solo execution of the next process (in the round-robin order) in {p, q, r}. If the blocked simulation eventually
resolves (s1−i finally completes the instance of BG-agreement), then si switches back to simulating all p, q
and r.

If no simulator blocks a simulated step forever, the simulated execution contains infinitely many steps
of every process, i.e., the set of correct processes in it is {p, q, r}. Otherwise, eventually some simulated
process forever runs in isolation and the set of correct processes in the simulated execution is {p}, {q},
or {r}. In both cases, the simulated execution of Alg is ABM -compliant, and the algorithm must output

166

a value, contradicting [30, 69]. This argument can be easily extended to show that ABM cannot allow for
solving any colorless task that cannot be solved 1-resiliently.

15.5.2 Disagreement power of an adversary

Thus, we need a more sophisticated criterion to evaluate the power of a generic adversary A. Delporte et
alii [25] proposed to evaluate the “disorienting strength” of an adversary A via its disagreement power.

Formally, the disagreement power of an adversary A is the largest k such that k-set consensus cannot be
solved in the presence of A.

It is shown in [25] that adversaries of the same disagreement power agree on the sets of colorless task
they allow for solving. The result is derived via a three-stage simulation. First, it is shown how an adver-
sary can simulate any dominating adversary, where the domination is defined through an involved recursive
inclusion property. Second, it is shown that every adversary A that does not dominate the k-resilient ad-
versary5 is strong enough to implement the anti-Ωk failure detector that, in turn, can be used to solve k-set
consensus [96]. Finally, it is shown that vector-Ωk (a failure detector equivalent to anti-Ωk) can be used to
solve any colorless task that can be solved k-resiliently. Thus, the largest k such that k-set consensus cannot
be solved A-resiliently indeed captures the power of A.

The characterization of adversaries proposed in [25] does not give a direct way of computing the dis-
agreement power of an adversary A and it does not provide a direct A-resilient algorithm to solve a colorless
task T , when T is A-resiliently solvable.

In the rest of this section, we give a simple algorithm to compute the disagreement power of an adversary.
For convenience, we introduce notion of set consensus power, i.e., the smallest k such that k-set consensus
can be solved in the presence of A. Clearly, the disagreement power of A is the set consensus power of A
minus 1.

15.5.3 Defining setcon

Let A be an adversary and let S ⊆ P be any subset of processes. Then AS denotes the adversary that
consists of all elements of A that are subsets of S (including S itself if S ∈ A). E.g., for A = {pq, qr, q, r}
and S = qr, AS = {qr, q, r}. For S ∈ A and a ∈ S, let AS,a denote the adversary that consists of all
elements of AS that do not include a. E.g., for A = {pq, qr, q, r}, S = qr, and a = q, AS,a = {r}.

Now we define a quantity denoted setcon(A), which we will show to be the set consensus power of
A. Intuitively, our goal is to split A into the minimal number k of sub-adversaries, such that every sub-
adversary allows for solving consensus. Then A allows for solving k-set consensus, but not (k − 1)-set
consensus (otherwise, k would not be minimal).

setcon(A) is defined as follows:

• If A = ∅, then setcon(A) = 0

• Otherwise, setcon(A) = maxS∈Amina∈S setcon(AS,a) + 1

Thus, setcon(A), for a non-empty adversary A, is determined as setcon(AS̄,ā)+1 where S̄ is an element
of A and ā is a process in S̄ that “max-minimize” setcon(AS,a). Note that for A ̸= ∅, setcon(A) ≥ 1.

We say that S ∈ A is proper if it is not a subset of any other element in A. Let proper (A) denote the set
of proper elements in A. Note that since for all S′ ⊂ S, mina∈S′ setcon(AS′,a) ≤ mina∈S setcon(AS,a),
we can replace S ∈ A with S ∈ proper (A) in Definition ??.

5Recall that the k-resilient adversary consists of all subsets of Π of size at least n− k.

167

q r

rq

{pqr, pq, pr, p}

p q r

{q, r}

p

Figure 15.2: Adversary A = {pqr, pq, pr, p, q, r} decomposed in two sub-adversaries, {pqr, pq, pr, p} and
{q, r}, each with setcon = 1.

15.5.4 Calculating setcon(A): examples

Consider an adversary A = {pqr, pq, pr, p, q, r}. It is easy to see that setcon(A) = 2: for S = pqr and
a = p, we have AS,p = {q, r} and setcon(AS,a) = 1. Thus, we decompose A into two sub-adversaries
{pqr, pq, pr, p} and {q, r}, each strong enough to solve consensus (Figure 15.2). Intuitively, in an execution
where the correct set belongs to A − AS,a = {pqr, pq, pr, p}, process p can act as a leader for solving
consensus. If the correct set belongs to AS,a = {q, r} (either q or r eventually runs solo) then q and r can
solve consensus using an obstruction-free algorithm. Running the two algorithms in parallel, we obtain a
solution to 2-set consensus. The reader can easily verify that any other choice of a ∈ pqr results in three
levels of decomposition.

As another example, consider the t-resilient adversary At-res = {S ⊆ Π, |S| ≥ n − t}. It is easy to
verify recursively that setcon(At-res) = t+ 1: at each level 1 ≤≤ t+ 1 of recursion we consider a set S of
n− j +1 elements, pick up a process p ∈ S and delegate the set of n− j processes that do not include p to
level j + 1. At level t+ 1 we get one set of size n− t and stop. Thus, setcon(At-res) = t+ 1.

More generally, for any superset-closed adversary A (A ∈ SC), setcon(A) = csize(A), the size of a
smallest-cardinality core of A. To show this, we proceed by induction. The statement is trivially true for an
empty adversary A with csize(A) = setcon(A) = 0. Now suppose that for all 0 ≤ j < k and all A′ ∈ SC
with csize(A′) = j, we have setcon(A′) = j. Consider A ∈ SC such that csize(A) = k. Note that the
only proper element of A is the whole set of processes Π. Thus, setcon(A) = mina∈Π setcon(AΠ,a) + 1.
By the induction hypothesis and the fact that csize(A) = k, we have mina∈Π setcon(AΠ,a) = k− 1. Thus,
setcon(A) = k.

Thus, by Theorem ??, setcon() indeed characterizes the disorienting power of adversaries A ∈ SC: a
task is A-resiliently solvable if and only if it is (c − 1)-resiliently solvable, where c = setcon(A). In the
rest of this section, we extend this result from SC to the universe of all adversaries.

15.5.5 Solving consensus with setcon = 1

Before we characterize the ability of adversaries to solve colorless tasks, we consider the special case of
adversaries of setcon = 1.

Consider an adversary A and S ∈ A. Suppose csize(AS) = 1, and let {a} be a core of AS . Obviously,
AS,a = ∅. On the other hand, if AS,a = ∅, then {a} is a core of AS . Thus, setcon(A) = 1 if and only if
∀S ∈ A, csize(AS) = 1

Suppose setcon(A) = 1. If S is the only proper element of A, then we can easily solve consensus (and,

168

Shared variables:
D, initially ⊥
R1, . . . , Rn, initially ⊥

propose(v)
80 est := v
81 r := 0
82 S := P
83 repeat
84 r := r + 1
85 (flag, est) := CAr.propose(est)
86 if flag = commit then
87 D := est ; return(est) {Return the committed value}
88 Ri := (est , r)
89 wait until ∃S ∈ A, ∀pj ∈ S: Rj = (vj , rj) where rj ≥ r or D ̸= ⊥

{Wait until a set in A moves}
90 if pr mod n+1 ∈ S then
91 est := vr mod n+1 {Adopt the estimate of the current leader}
92 until D ̸= ⊥
93 return(D)

Figure 15.3: Consensus with a “one-level” adversary A, setcon(A) = 1

thus, any other task [44]), by deciding on the value proposed by the only member of a core of AS . The
process is guaranteed to be correct in every execution.

Now we extend this observation to the case when A contains multiple proper elements. The consen-
sus algorithm, presented in Figure 15.3, is a “rotating coordinator” algorithm inspired by by Chandra and
Toueg [19].

The algorithm proceeds in rounds. In each round r, every process pi first tries to commit its current
decision estimate in a new instance of commit-adopt CAr. If pi succeeds in committing the estimate, the
committed value is written in the “decision” register D and returned. Otherwise, pi adopts the returned value
as its current estimate and writes it in Ri equipped with the current round number r. Then pi takes snapshots
of {R1, . . . , Rn} until either a set S ∈ A reaches round r or a decision value is written in D (in which case
the process returns the value found in D). If no decision is taken yet, then pi checks if the coordinator of
this round, pr mod n, is in S. If so, pi adopts the value written in Rr mod n and proceeds to the next round.

The properties of commit-adopt imply that no two processes return different values. Indeed, the first
round in which some process commits on some value v (line 87) “locks” the value for all subsequent rounds,
and no other process can return a value different from v.

Suppose, by contradiction, that some correct process never returns in some A-compliant execution e.
Recall that A-compliant means that some set in A is exactly the set of correct processes in e. If a process
returns, then it has previously written the returned value in D. Since, in each round, a process performs a
bounded number of steps, by our assumption, no process ever writes a value in D and every correct process
goes through infinitely many rounds in e without returning.

Let S̄ ∈ A be the set of correct processes in e. After a round r′ when all processes outside S̄ have failed,
every element of A evaluated by a correct process in line 89 is a subset of S̄. Finally, since the minimal core
size of AS̄ is 1, all these elements of A overlap on some correct process pj .

Consider round r = mn + j ≥ r′ − 1. In this round, pj not only belongs to all sets evaluated by the

169

correct processes, but it is also the coordinator (j = r mod n+ 1). Thus, the only value that a process can
propose to commit-adopt in round r + 1 is the value previously written by pj in Rj . Hence, every process
that returns from commit-adopt in round r + 1 must commit and return—a contradiction. Thus:

Theorem 45 [34] If setcon(A) = 1, then consensus can be solved A-resiliently.

15.5.6 Adversarial partitions

One way to interpret Definition ?? is to say that setcon(A) captures the size of a minimal-cardinality parti-
tioning of A into sub-adversaries A1, . . . ,Ak, each of setcon = 1.

Indeed, for a proper set S ∈ A, selecting an element a ∈ S allows for splitting AS into two sub-
adversaries AS − AS,a and AS,a. AS − AS,a is the set of elements of AS that contain a and, thus,
setcon(AS − AS,a) = 1 (a can act as a leader). Moreover, selecting a so that setcon(AS,a) is minimized
makes sure that AS,a = setcon(AS)− 1.

Intuitively, A1, the first such sub-adversary, is the union of AS − AS,a, for all such proper S ∈ A
and a ∈ S. Adversaries A2, . . . ,Ak are obtained by a recursive partitioning of all A − A1. (A detailed
description of this partitioning can be found in [34].)

Thus, given an adversary A such that setcon(A) = k, we derive that A allows for solving k-set consen-
sus. Just take the described above partitioning of A in to k sub-adversaries, A1, . . . ,Ak such that, for all
j = 1, . . . , k, setcon(Aj) = 1. Then every process can run k parallel consensus algorithms, one for each
Aj , proposing its input value in each of these consensus instances (such algorithm exist by Theorem 45).
Since the set of correct processes in every A-compliant execution belongs to some Aj , at least one consen-
sus instance returns. The process decides on the first such returned value. Moreover, at most k different
values are decided and each returned value was previously proposed. Thus:

Theorem 46 [34] If setcon(A) = k, then A allows for solving k-set consensus.

15.5.7 Characterizing colorless tasks

But can we solve (k − 1)-set consensus in the presence of A such that setcon(A) = k? As shown in [34],
the answer is no: A does not allow for solving any colorless task that cannot be solved (k − 1)-resiliently.
The result is derived by a simple application of BG simulation [12, 14].

The intuition here is the following. Suppose, by contradiction, that we are given an adversary A such
that setcon(A) = k and a colorless task T that is solvable A-resiliently but not (k − 1)-resiliently. Let
Alg be the corresponding A-resilient algorithm. Then we can construct a (k − 1)-resilient simulation of an
A-compliant execution of Alg. Roughly, we build upon BG-simulation, except that the order in which steps
of Alg are simulated is not fixed in advance to be round-robin. Instead, the order is determined online, based
on the currently observed set of participating processes.

We start with simulating steps of processes in S ∈ A such that setcon(AS) = k (by Definition ??,
such S exists). If the outcome of a simulated step of some process a cannot be resolved (the corresponding
BG-agreement is blocked), we proceed to simulating processes in an element S′ ∈ AS,a with the largest
setcon (if there is any). As soon as the blocked BG-agreement on the step of a resolves, the simulation
returns to simulating S. Since setcon(A) = k, we can obtain exactly k levels of simulation. Therefore, in
a (k − 1)-resilient execution, at most k − 1 simulated processes (each in a distinct sub-adversary of A) can
be blocked forever. Since A allows for k such sub-adversaries, at least one set in A accepts infinitely many
simulated steps. The resulting execution is thus A-compliant, and we obtain a (k − 1)-resilient solution for
T—a contradiction (detailed argument is given in [34]).

170

In fact, the set of colorless tasks that can be solved given an adversary A such that setcon(A) = k is
exactly the set of colorless tasks that can be solved (k−1)-resiliently, but not k-resiliently. Indeed, A allows
for solving k-set consensus, and we can employ the generic algorithm of [33] that solves any (k−1)-resilient
colorless task using the k-set consensus algorithm as a black box. Thus:

Theorem 47 [34] Let A be an adversary such that setcon(A) = k and T be a colorless task. Then A
solves T if and only if T is (k − 1)-resiliently solvable.

Recall that the set consensus power of an adversary A is the smallest k such that A can solve k-set consensus.
Theorem 47 implies:

Corollary 10 The set consensus power of A is setcon(A), and the disagreement power of A is setcon(A)−
1.

By Theorem ??, determining setcon(A) may boil down to determining the minimum hitting set size of A,
and thus, by [59]:

Corollary 11 Determining the set consensus power of an adversary is NP-complete.

15.6 Non-uniform adversaries and generic tasks

This chapter primarily talked about colorless tasks (consensus, set agreement, simplex agreement, et cetera)
in the read-write shared memory systems where processes may fail by crashing in a non-uniform (non-
identical and correlated) way. We modeled such non-uniform failures using the language of adversaries [25]
and we derived a complete characterization of an adversary via its set consensus power [34] (or, equivalently
its disagreement power [25]).

The techniques discussed here can be extended to models where processes may also communicate
through stronger objects than just read-write registers (e.g., k-process consensus objects). In particular,
BG-simulation is used in [34] to capture the ability of leveled adversaries of [85] to prevent processes from
solving consensus among n processes using k-process consensus objects (k < n).

Combinatorial topology proved to be a powerful instrument in analyzing a special class of superset-
closed adversaries and colorless tasks, not only in read-write shared-memory models [47], but also in a
variety of other models, including message-passing models and iterated models with k-set consensus objects.

However, the power of adversaries with respect to generic (not necessarily) colorless tasks is still poorly
understood. Consider, for example, a task Tpq which requires processes p and q (in a system of three
processes p, q, and r) to solve consensus and allows r to output any value. The task is obviously not
colorless: the output of r cannot always be adopted by p or q. The 2-obstruction-free adversary A2-OF =
{pq, pr, qr, p, q, r} does not allow for solving Tpq: otherwise, we would get a wait-free 2-process consensus
algorithm. On the other hand, Apq = {pqr, pq, p, r} (p is correct whenever q is correct) allows for solving
Tpq (just use p as a leader for p and q). But setcon(A2-OF) = setcon(Apq) = 2!

One may say that the task Tpq is “asymmetric”: it prioritizes outputs of some processes with respect
to the others. Maybe our result would extend to symmetric tasks whose specifications are invariant under
a permutation of process identifiers? Unfortunately, there are symmetric colored tasks that exhibit similar
properties [94]. So we need a more fine-grained criterion than set consensus power to capture the power of
adversaries with respect to colored tasks.

Finally, this chapter focuses on non-uniform crash faults in asynchronous shared-memory systems. Non-
uniform patterns of generic (Byzantine) types of faults are explored in the context of Byzantine quorum

171

systems [71] (see also a survey in [91]) and secure multi-party computations [53]. Both approaches assume
that a faulty process can deviate from its expected behavior in an arbitrary (Byzantine) manner. In particular,
in [71], Malkhi and Reiter address the issues of non-uniform failures in the Byzantine environment by
introducing the notion of a fail-prone system (adversarial structure in [53]): a set B of process subsets
such that no element of B is contained in another, and in every execution some B ∈ B contains all faulty
processes. Determining the set of tasks solvable in the presence of a given generic adversarial structure is
an interesting open problem.

Bibliographic notes

Non-uniform failure models were described by Junqueira and Marzullo [58, 57] using the language of cores
and survivor sets. A more general approach was taken by Delporte-Gallet et al. [25] who defined an adver-
sary via live sets it allows and introduced the notion of disagreement power of an adversary as the means of
characterizing its power in solving k-set agreement. Herlihy and Rajsbaum [47] used elements of modern
topology to characterize the ability superset-closed adversaries (that can also be described via survivor sets
and cores) to solve colorless tasks. Gafni and Kuznetsov derived this result using simulations and extended
it to generic tasks [36] and generic adversaries [34]. In a similar vein, Imbs et alii [54] and Taubenfeld [85]
considered a related model of asymmetric progress conditions.

172

Part VI

Unreliable Memory

173

Chapter 16

Reliable objects from unreliable objects

16.1 Introduction

The previous chapters have considered that the base atomic registers and consensus objects, from which
higher level objects are built, do not fail. This means that they always respond to their operation invocations
according to their sequential specification. As an example, a read of an atomic register by a correct process
always returns the last written value (the meaning of “last” is defined by the atomicity consistency criterion).
Similarly, given a consensus object CONS , the invocation CONS .propose() by a correct process always
returns the value decided by this consensus object. This chapter revisits the failure-free object assumption,
and investigates the case where these base objects are prone to crash failures.

Let us remind that registers and consensus objects are the base objects from which any object with a
sequential specification can be built (see Chapter 15 on consensus universality). As a reliable register (resp.,
consensus object) can be built from base registers (resp., consensus objects) some of them being faulty, it
follows that any object with a sequential specification can be built despite the failure of base objects its
implementation relies on.

16.1.1 Responsive and non-responsive crash failures

Intuitively, an object crash failure occurs when the corresponding object stops working. More precisely,
two different crash failure models can be distinguished: the responsive crash model and the non-responsive
crash model.

Responsive crashes In the responsive crash failure model, an object fails if it behaves correctly until some
time, after which every operation returns the default value ⊥. This means that the object behaves according
to its sequential specification until it crashes (if it ever crashes), and then satisfies the property “once ⊥,
forever ⊥”. The responsive crash model is sometimes called fail-stop model.

Non-responsive crashes In the non-responsive crash model, an object does not return ⊥ after it has
crashed. There is no response and the invoked operation remains pending forever. The no-responsive crash
model is sometimes called fail-silent model.

Facing non-responsive failures is more difficult than facing responsive failures. Indeed, in the asyn-
chronous computation model, a process that invokes an operation on an object that has crashed and is not

175

responsive, has no mean to know whether the object has indeed crashed or is only very slow. As we will
see, some objects that can be implemented in the responsive failure model, can no longer be implemented
in the non-responsive failure model.

16.1.2 Notion of t-resiliency

As indicated above, we are interested in building reliable objects from base object prone to crash. More
precisely we are interested in self-implementation, which means that we want to build an object of type T
(atomic register or consensus), from base objects of the same type T .

Let us assume that the reliable object RO is built from m base objects of the same type (Figure 16.1).
RO is said to be t-resilient if behaves correctly despite the crash of up to t base objects from which it is built.
This means that, for the processes that use RO, there is no difference if none, 1, 2, etc., up to t < m base
objects crash. (If there are differences, those concern efficiency and could be perceived only by an external
observer. Due to the asynchrony of the system model, they are “hidden” to the processes.) Differently, if
more than t base object crash, there is no guarantee on the behavior of RO (that can then behaves arbitrarily).

︸
︷︷

︸

︸ ︷︷ ︸
m > t base objects

Reliable object RO

Figure 16.1: Reliable object from unreliable base objects

16.1.3 Content of the chapter

This chapter focuses on the construction of wait-free t-resilient objects. As we are mainly interested in the
basic principles that underlie the design of wait-free constructions, this chapter focuses on the consensus
object and on the 1W1R atomic register object. It has been shown in chapter 3 (section 7) how to build a
reliable 1WMR (or MWMR) atomic register from 1W1R reliable atomic registers.

16.2 Registers and consensus objects with responsive failures

This section presents self-constructions of wait-free t-resilient objects from m ≥ t+1 base objects prone to
responsive crash failures. “Self-construction” means that the reliable object that is built and the base objects
from which it is built have the same type. It is easy to see that t+ 1 is a tight lower bound on the number of
base objects required to mask up to t faulty base objects. If an operation on the constructed object accesses
only t base objects, and all of them fail, there is no way for the constructed object to mask the base object
failures. As announced at the beginning of the chapter, these constructions concern 1W1R atomic registers
and consensus.

16.2.1 Reliable register when failures are responsive: an unbounded construction

The first construction is based on sequence numbers. It consequently requires base atomic registers that are
potentially unbounded. The t+ 1 registers are denoted REG [1 : (t+ 1)]. Each register REG [i] is made up

176

of two fields denoted REG [i].sn (sequence number part) and REG [i].val (value part). Each base register
REG [i] is initialized to the pair (vinit, 0) where vinit is the initial value of the constructed register.

operation RO.write(v): % invoked by the writer %
sn← sn+ 1;
for j ∈ {1, . . . , t+ 1} do REG[j]← (v, sn) end do;
return ()

operation RO.read(): % invoked by the reader %
% The initial value of last is (v init, 0) %
for j ∈{1, . . . , t+ 1} do

aux← REG [j];
if (aux ̸= ⊥) ∧ (aux.sn > last.sn) then last← aux end if

end do;
return (last.val)

Figure 16.2: 1W1R t-resilient atomic register: construction 1

The read and write operation to access the t-resilient 1W1R register are described in Figure 16.2. The
write operation consists in writing the pair, made up of the new value plus its sequence number, in all the
base registers; sn is a variable local to the writer that is used to generate sequence numbers (it is initialized
to 0).

The reader keeps in a local variable denoted last, and initialized to (vinit, 0), a copy of the pair (v, sn)
with the highest sequence number it has ever read. This variable allows preventing new/old inversions when
base registers or the writer crash. The read operation consists in reading the base registers (in any order).
Let us observe that, as at most t registers can crash, at least one register always returns a non-⊥ value. For
all the base registers whose read returns a non-⊥ value, if the reader reads a more recent value, it updates
last accordingly. Finally, it returns the value last.val, i.e., the value associated with the highest sequence
number it has ever seen (last.sn).

It is important to notice that the read and write operations access the base registers in any order. This
means that no operation on a base register depends on a previous operation on another base register. Said
in another way, they could be issued in parallel, thereby favoring efficiency. Differently, when base regis-
ters can suffer non-responsive failures, the parallel invocation approach has to be used to cope with base
operations that never answer. (This is illustrated in Figure 16.8.) Let us also notice that the version of
the construction with parallel invocations provides an optimal construction as far as time complexity is
concerned.

Theorem 48 The algorithm described in Figure 16.2 wait-free implements a t-resilient 1W1R atomic regis-
ter from t+ 1 1W1R base atomic registers that can suffer responsive crash failures.

Proof As already noticed, the construction is trivially wait-free. Moreover, as each read operation returns a
non-⊥ value, the register that is built is reliable. So, it remains to show that the built register is atomic. This
is done by first defining a total order on the read and write operations on the constructed object, and then
showing that the resulting sequence satisfies the sequential specification of a register. This second step uses
the fact that there exists a total order on the accesses to the base registers (as those registers are atomic).

Let us associate with each write operation on the constructed object RO (high level write) the sequence
number associated with the value it writes. Similarly, let us associate with each high level read operation the
sequence number of the value it reads. Let Ŝ be the total order on the high level read and write operations
defined as follows. The high level write operations are ordered according to their sequence numbers. The

177

high level read operations with a given sequence number are ordered just after the high level write operation
with the same sequence number. If two or more read operations have the same sequence number, they are
ordered in Ŝ according to their invocation order. We have the following.

• It follows from its definition that Ŝ includes all the operations issued by the reader and the writer
(except possibly their last operation if they crash).

• Due to the way the local variable sn is used by the writer, the high level write operations appear in Ŝ
according to their invocation order.

• Similarly, the high level read operations appear in Ŝ according to their invocation order. This is due
the local variable last used by the reader (the reader returns the value with the highest sequence
number it has ever obtained from a base register).

• As the base registers are atomic, the base operations on these registers are totally ordered. Conse-
quently, when we consider that total order, a base read operation that obtains the sequence number sn
from a base atomic register, is after the base write operation that wrote sn into that register.

As Ŝ is such that a high level read operation that obtains a value whose sequence number is sn is after
the snth high level write operation, it follows that Ŝ is consistent with the occurrence order defined
by the operations on the base objects.

It follows from the previous items that Ŝ is a linearization of the high level read and write operations.
Consequently, the constructed object RO is an atomic register. ✷Theorem 48

16.2.2 Reliable register when failures are responsive: a bounded construction

Eliminating sequence numbers When we consider the previous construction, an interesting question is
the following: is it possible to design a t-resilient 1W1R atomic register from t+ 1 bounded base registers,
i.e., are the sequence numbers necessary? The construction that follows shows that they are not: there is a
bounded 1W1R atomic register construction. Moreover, that construction is optimal in the sense that each
base register has only to contain the value that is written. No additional control information is required.

The corresponding construction is described in Figure 16.4. The writer simply writes the new value in
each base register, in increasing order, starting from REG [1] until REG [t+1]. The reader scans sequentially
the registers in the opposite order, starting from REG [t+1]. It stops just after the first read of a base register
that returns a non-⊥ value. As at least one base register does not crash (model assumption), the reader
always obtains a non-⊥ value. (Let us remind that, as we want to build a t-resilient object, the construction
is not required to provide guarantees when more than t base objects crash.) It is important to remark that,
differently from the construction described in Figure 16.2, each read and write operation has now to follow
a predefined order when it accesses the base registers. Moreover, the order for reading and the order for
writing are opposite. These orders are depicted in Figure 16.3 with a space-time diagram in which the “time
line” of each base register is represented. A black circle indicates a base read or write operation on a base
register REG [k]. The read stops reading base registers when it reads a non-⊥ value for the first time.

Why read and write operations have to access base registers in opposite order To understand why the
high level read and write operations have to access the base registers in opposite order, let us consider the
following scenario where both the read and write operations access the base registers in the same order, from
REG [1] to REG [t+1].The write updates REG [1] to x and crashes just after. Then, a read obtains the value

178

REG [2]

REG [1]

REG [k]

REG [k − 1]

REG [t + 1]

Write line Read line

⊥
⊥

v ̸= ⊥

REG [t]

Figure 16.3: Order in which the operations access the base registers

x. Sometimes later, REG [1] crashes. After that crash occurred, the reader reads REG [1], obtains ⊥, then
reads REG [2] and obtains y, the value that was written before x. The two high level read operations issued
by the reader suffer a new/old inversion, and consequently, the constructed object is not atomic. Forcing the
reader to access the base registers in the reverse order (with respect to the writer) ensures that if the reader
returns v from REG [j], then all the based registers REG [k] such that j < k ≤ t + 1 have crashed. More
generally, as we have seen previously, if the reader and the writer do not access the base registers in opposite
order, additional control information has to be used, such as sequence numbers.

IL SEMBLE QUE CETTE CONSTRUCTION MARCHE POUR UN REGISTRE 1WMR (A LA PLACE
DE 1W1R). IF FAUT MODIFIER LE TEXTE ET LE THEOREME SI C’EST LE CAS.

operation RO.write(v): % invoked by the writer %
for j from 1 to t+ 1 do REG[j]← v end do;
return ()

operation RO.read(): % invoked by the reader %
for j from t+ 1 to 1 do

aux← REG [j];
if (aux ̸= ⊥) then return (aux) end if

end do

Figure 16.4: 1W1R t-resilient atomic register: construction 2

Tradeoff It is interesting to emphasize the tradeoff between this construction and the previous one. The
construction of a 1W1R t-resilient atomic register described in Figure 16.2 is time-optimal (when the in-
vocations are done in parallel), but requires additional control information, namely, sequence numbers.
Differently, the construction described in Figure 16.4 is space optimal (no additional control information is
required), but requires sequential invocations on the base registers.

Theorem 49 The algorithm described in Figure 16.4 wait-free implements a t-resilient 1W1R atomic reg-
ister from t+ 1 1W1R base atomic registers that can suffer responsive crash failures. Moreover it is space
optimal.

179

Proof The wait-free property follows directly from the fact there is no explicit or implicit wait statement in
the construction. Due to the assumption that at most t base registers crash, the value returned by a high level
read operation is a value that has been previously written. Consequently, the constructed object is a register.

The proof that the constructed object is atomic is done incrementally. It is shown that the register is first
safe, then regular and finally atomic. The proof for going from regularity to atomicity consists in showing
that there is no new/old inversion, from which atomicity follows from Theorem 1 of chapter 3.

• Safeness. Let us consider a read operation of the constructed register when there is no concurrent
write operation. Safeness requires that, in this scenario, the read returns the last written value.

As (by assumption) no write operation is concurrent with the read operation, we conclude that the
writer has not crashed during the last write operation issued before the read operation (otherwise,
this write operation would not be terminated and consequently would be concurrent with the read
operation).

The last write has updated all the non-crashed registers to the same value v. It follows that, whatever
the base register from which the read operation obtains a non-⊥ value, it obtains and returns the value
v.

• Regularity. If a read operation r is concurrent with one or several write operations, we have to show
that it obtains the value of the constructed register before these write operations, or the value written
by one of them.

Let us first observe that a read operation cannot obtain from a base register a value that has not yet
been written into it. We conclude from that observation that a read operation cannot return a value
that has not yet been written by a write operation.

Let v be the value of the register before the concurrent write operation. This means that all the non-
crashed base registers are equal to v before the first concurrent write operation. If the read operation
obtains the value v, regularity is ensured. So, let us assume that r obtains another value v′ from some
register REG [x]. This means that REG [x] has not crashed and has been updated to v′ after having
been updated to v. This can only be done by a concurrent write operation that writes v′ and has been
issued by the writer after the write of v. The constructed register is consequently regular.

• Atomicity. We prove that there is no new/old inversion. Let us assume that two read operations r1
and r2 are such that r1 is invoked before r2, r1 returns v2 that has been written by w2, r2 returns v1
that has been written by w1, and w1 is before w2 (Figure 16.5.

time line

r1 r2

w2w1

Figure 16.5: Proof of no new/old inversion

The read operation r1 returns v2 from some base register REG [x]. It follows from the read algorithm
that all the base registers REG [y] such that x < y ≤ t+1 have crashed. It also follows from the write
algorithm that the non-crashed registers from REG [1] to REG [x − 1] contain v2 or a more recent
value when r1 returns v2.

180

As the base registers from REG [t+ 1] until REG [x+ 1] have crashed when r2 is invoked, that read
operation obtains ⊥ from all these registers. When it reads the atomic register REG [x], it obtains v2,
or a more recent value, or ⊥.

– If it obtains v2 or a more recent value, there is no new/old inversion.

– If it obtains ⊥, it continues reading from REG [x − 1] until it finds a base register REG [y]
(y < x) from which it obtains a non-⊥ value. On another side, as the write algorithm writes the
base registers in increasing order starting from REG [1], it follows that no register from REG [1]
until REG [x − 1] (not crashed when read by r2) can contain a value older than v2, namely it
can only contain v2 or a more recent value. It follows that there is no possibility of new/old
inversion also in that case.

✷Theorem 49

An improvement An easy way to improve the time efficiency of the previous read operation consists in
providing the reader with a local variable (denoted shortcut and initialized to t + 1), that keeps an array
index such that, to the reader knowledge, each REG [k] has crashed, for shortcut < k ≤ t+1. The resulting
read algorithm is described in Figure 16.6. It is easy to see that, if after some time no more base register
crashes, shortcut always points to the first (in descending order) non-crashed base register. This means that
there is a time after which the duration of a read operation is constant in the sense that it depends neither on
t, nor on the number of base registers that have crashed.

operation RO.read(): % invoked by the reader %
for j from shortcut to 1 do

aux← REG[j];
if (aux ̸= ⊥) then shortcut ← j; return (aux) end if

end do

Figure 16.6: Improving construction 2

16.2.3 Consensus when failures are responsive: a bounded construction

This section presents a t-resilient consensus object RES CONS built from m = t + 1 base consensus
objects. As for the previous register, it is easy to see that t + 1 is a tight lower bound on the number of
crash-prone base consensus objects.

The “parallel invocations” approach does not work Before presenting a construction that builds a t-
resilient consensus object, let us give an intuitive explanation of the fact that there is no solution when the
invocations on the base consensus objects are done in parallel.

So, let us assume that we have m = 2t+1 base consensus objects, and an invocation on the constructed
object is implemented as follows: a process pi (1) invokes in parallel propose(v) one on each base object,
and then (2) takes the value decided by a majority of the base consensus objects. As there is a majority of
base objects that are reliable, this algorithm does not block, and pi receives decided values from a majority
of base consensus objects. But, according to the values proposed by the other processes, it is possible that
none of the values it receives be a majority value. It is even possible that it receives a different value from

181

each of the 2t+1 base consensus objects if there are n ≥ m = 2t+1 processes and they all have a proposed
different values to the constructed consensus object.

While this approach works for objects such as atomic registers (see below), it does not for consensus
objects. This comes from the fact that registers are data objects, while consensus are synchronization objects
and synchronization is inherently non-deterministic.

A t-resilient construction The t+1 base consensus objects are denoted CONS [1 : (t+1)]. The construc-
tion is described in Figure 16.7. The variable est is local to the invoking process. When a process pi invokes
RES CONS .propose(v), it first sets est to the value v it proposes. Then, pi sequentially visits the base con-
sensus objects in a predetermined order (e.g., starting from CONS [1] until CONS [t+1]; what is important
point is that all the processes use the same visit order). At the step k, pi invokes CONS [k].propose(est).
Then, if the value it obtains is different from ⊥, pi adopts it as its new estimate value est. Finally, pi de-
cides the value of est after it has visited all the base consensus objects. Let us observe that, as at least one
consensus object is not faulty, all the processes that invoke propose() on that object obtain the same non-⊥
value from it.

operation RES CONS .propose(v):
(1) est← v;
(2) for k from 1 to t+ 1 do
(3) aux← CONS [k].propose(est);
(4) if (aux ̸= ⊥) then est← aux end if
(5) end do;
(6) return (est)

Figure 16.7: Construction of a t-resilient consensus object

Theorem 50 The algorithm described in Figure 16.7 wait-free implements a t-resilient consensus object
from t+ 1 base consensus objects that can suffer responsive crash failures.

Proof The proof has to show that, it no more than t base consensus object crash, the object that is built
satisfies the validity, agreement and wait-free termination properties of consensus.

As any CONS [k] base consensus is responsive, it follows that any CONS [k].propose(est) invocation
terminates (line 3). It follows that, when executed by a correct process, the for loop always terminates. The
wait-free termination follows directly from these observations.

When a process invokes RES CONS .propose(v), it first initializes its local variable est to the value v
it proposes. Then, if est is modified, it is modified at line 4 and takes the value proposed by a process to the
corresponding base consensus object. By backward induction, that value has been proposed by a process.
The consensus validity property follows.

Let CONS [x] be the first (in the increasing order on x) non-faulty base consensus object (by assumption,
there is at least one such object). Let v be value decided by that consensus object. It follows from the
agreement property of that base object, that all the processes that invoke CONS [x].propose(est) decide v.
From then on, only v can be proposed to the base consensus objects CONS [x + 1] until CONS [t + 1]. It
follows that, from CONS [x], the only value proposed to a next consensus object is v. Consequently, v is the
value decided by the processes that execute line 6. The agreement property follows. (As we can see, the fact
that all the processes “visit” the base consensus objects in the same order -from CONS [1] to CONS [t+1]-
is central in the proof of this agreement property.) ✷Theorem 50

182

16.3 Registers and consensus objects with non-responsive failures

16.3.1 Reliable register when failures are not responsive: an unbounded construction

Construction of a 1W1R reliable register When failures are not responsive, the construction of a 1W1R
atomic register is still possible but requires a higher cost in terms of base registers, namely m ≥ 2t+1 base
registers are then required. The principle of the construction are relatively simple. They are:

• The use of sequence numbers, as in the construction for responsive failures (Figure 16.2).

• The use of the majority notion, as the model assumes at most t unreliable base registers, with t <
m/2 < m− t. This implies that any two majorities of base objects do intersect. Moreover, any set of
t+ 1 base registers contains at least one correct register.

• The parallel activation of read operations on base registers, as now it is possible that such a read
operation never returns a result if the corresponding base object has crashed. Due to the majority of
correct base registers, we know that a majority of these base read operations do terminate, but it is not
know in advance which ones.

The construction is described in Figure 16.8. It is a straightforward extension of the algorithm described
in Figure 16.2, that takes into account the fact that a base operation can never answer. So, it considers
m = 2t + 1, and issues base read and write operations in parallel in order to prevent a possible definitive
blocking that could occur if the base operations were issued sequentially. As in the algorithm described in
Figure 16.2, the reader maintains a local variable last that keeps the (val, sn) pair with the highest sequence
number it has ever read from a base register.

operation RO.write(v): % invoked by the writer %
sn← sn+ 1;
concurrently for each base register j ∈ {1, . . . ,m}

do issue write (v, sn) into REG [j] end do;
wait until (a majority of the previous base write operations have terminated);
return ()

operation RO.read(): % invoked by the reader %
concurrently for each base register j ∈ {1, . . . ,m}

do issue read () on REG[j] end do;
wait until (a majority of the previous base read operations have terminated);
let pairs= the set of pairs (val, sn) received from the previous read operations;
last← the pair in the set pairs ∪ {last} with the highest sequence number;
return (last.val)

Figure 16.8: 1W1R t-resilient atomic register despite non-responsive crashes

This construction shows that, when one is interested in building a reliable 1W1R atomic register, the
price to go from base object responsive failures to non-responsive failures, increases from t+1 base registers
to 2t+ 1 base registers.

Theorem 51 The algorithm described in Figure 16.8 wait-free implements a t-resilient 1W1R atomic regis-
ter from m = 2t+ 1 base 1W1R atomic registers that can suffer non-responsive crash failures.

Proof The proof is a simple adaptation of the proof of Theorem 48 to the context of non-responsive
crash failures. It is left to the reader as an exercise. (The fact that at least one non-faulty base register

183

is written (read) used in Theorem 48 is replaced here by the majority of correct base registers assumption.)
✷Theorem 49

16.3.2 Consensus when failures are not responsive: an impossibility

This section presents an impossibility result. Differently from atomic registers, no t-resilient consensus
object can be built from crash-prone non-responsive consensus objects.

Theorem 52 There is no algorithm that wait-free implements a consensus object from crash-prone non-
responsive consensus objects and reliable atomic registers.

Proof The proof is by contradiction. Let us assume that there is an algorithm A that builds a consensus
object from reliable atomic registers and any number x of consensus objects such that at least one of them
is crash-prone and non-responsive. Each consensus object can be simulated by an asynchronous process.
............ PHRASE PRECEDENTE A RENDRE PLUS PRECISE EXPLIQUER COMMENT UN
PROC SIMULE UN OBJET CONSENSUS ? It follows that A solves the consensus problem in a
systems made up of atomic registers and x asynchronous processes, where one of them can crash. It has
been shown in chapter 11 (section 3) that atomic registers have consensus number 1. This means that the
assumed algorithm A is impossible to design. ✷Theorem 52

Bibliographic notes

Chandra-Jayanti-Toueg JACM 98

Exercises

1- Improve construction 1 in order to obtain a 1WMR t-resilient atomic register.

184

Bibliography

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared memory.
J. ACM, 40(4):873–890, 1993.

[2] Y. Afek, G. Brown, and M. Merritt. Lazy caching. ACM Transactions on Programming Languages
and Systems, 15(1):182–205, 1993.

[3] Y. Afek, E. Weisberger, and H. Weisman. A completeness theorem for a class of synchronization
objects (extended abstract). In PODC, pages 159–170, 1993.

[4] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, Oct. 1985.

[5] G. Amdahl. Validity of the single processor approach to achieving large-scale computing capabilities.
In AFIPS Conference Proceedings, volume 30, page 483485, 1967.

[6] H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with reads and writes in the absence of step
contention. In Proceedings of the 19th International Conference on Distributed Computing, DISC’05,
pages 122–136, 2005.

[7] H. Attiya and J. Welch. Sequential consistency versus linearizability. ACM Transactions on Computer
System, 12(2):91–122, 1994.

[8] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (ex-
tended abstract). In PODC ’83: Proceedings of the annual ACM symposium on Principles of dis-
tributed computing, pages 27–30, 1983.

[9] A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Sys-
tems. Addison Wesley, 1986.

[10] A. Björner. In R. L. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics (Vol.
2), chapter Topological Methods, pages 1819–1872. 1995.

[11] B. Bloom. Constructing two-writer atomic registers. In Proceedings of the Sixth Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC ’87, pages 249–259, 1987.

[12] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous compu-
tations. In STOC, pages 91–100, May 1993.

[13] E. Borowsky and E. Gafni. Immediate atomic snapshots and fast renaming. In PODC, pages 41–51,
1993.

185

[14] E. Borowsky, E. Gafni, N. A. Lynch, and S. Rajsbaum. The BG distributed simulation algorithm.
Distributed Computing, 14(3):127–146, 2001.

[15] H. P. Brinch, editor. The Origin of Concurrent Programming. Springer Verlag, 2002. 534 pages.

[16] J. E. Burns and G. L. Peterson. Constructing multi-reader atomic values from non-atomic values. In
Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC ’87,
pages 222–231, 1987.

[17] H. C.A.R. Monitors: an operating system structuring concept. Communications of the ACM,
17(10):549–557, 1974.

[18] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.
J. ACM, 43(4):685–722, July 1996.

[19] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. J. ACM,
43(2):225–267, Mar. 1996.

[20] S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchronous sys-
tems. Information and Computation, 105(1):132–158, 1993.

[21] S. Chaudhuri, M. Kosa, and J. Welch. One-write algorithms for multivalued regular and atomic register.
Acta Informatica, 37(161-192), 2000.

[22] S. Chaudhuri and J. L. Welch. Bounds on the costs of multivalued register implementations. SIAM J.
Comput., 23(2):335–354, 1994.

[23] O.-J. Dahl, E. Dijkstra, and H. C.A.R. Structured Programming. Academic Press, 1972. 220 pages.

[24] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Shared memory vs message passing. Technical
Report 200377, EPFL Lausanne, 2003.

[25] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann. The disagreement power of an
adversary. Distributed Computing, 24(3-4):137–147, 2011.

[26] E. Dijkstra. Solution of a problem in concurrent programming control. Communications of the ACM,
8, 1965.

[27] A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Atomic Trasanctions. Morgan Kaufmann Publishing,
1994.

[28] F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized synchronization. J. ACM,
45(5):843–862, Sept. 1998.

[29] F. E. Fich, V. Luchangco, M. Moir, and N. Shavit. Obstruction-free algorithms can be practically
wait-free. In Proceedings of the International Symposium on Distributed Computing, pages 493–494,
2005.

[30] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

186

[31] F. C. Freiling, R. Guerraoui, and P. Kuznetsov. The failure detector abstraction. ACM Comput. Surv.,
2011.

[32] E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and asynchrony. In
PODC, 1998.

[33] E. Gafni and R. Guerraoui. Generalized universality. In Proceedings of the 22nd international confer-
ence on Concurrency theory, CONCUR’11, pages 17–27, Berlin, Heidelberg, 2011. Springer-Verlag.

[34] E. Gafni and P. Kuznetsov. Turning adversaries into friends: Simplified, made constructive, and ex-
tended. In OPODIS, pages 380–394, 2010.

[35] E. Gafni and P. Kuznetsov. On set consensus numbers. Distributed Computing, 24(3-4):149–163,
2011.

[36] E. Gafni and P. Kuznetsov. Relating L-Resilience and Wait-Freedom via Hitting Sets. In ICDCN,
pages 191–202, 2011.

[37] E. Gafni and S. Rajsbaum. Distributed programming with tasks. In OPODIS, pages 205–218, 2010.

[38] J. Gray and A. Reuter. Transactions Procesing: Concepts and Techniques. Morgan Kaufmann Pub-
lishing, 1992.

[39] R. Guerraoui, M. Kapaĺka, and P. Kouznetsov. The weakest failure detectors to boost obstruction-
freedom. In Proceedings of the 20th International Conference on Distributed Computing, DISC’06,
pages 399–412, 2006.

[40] R. Guerraoui and P. Kouznetsov. Failure detectors as type boosters. Distributed Computing, 20(5):343–
358, 2008.

[41] R. Guerraoui and E. Ruppert. Linearizability is not always a safety property. In Networked Systems -
Second International Conference, NETYS 2014, pages 57–69, 2014.

[42] S. Haldar and K. Vidyasankar. Constructing 1-writer multireader multivalued atomic variables from
regular variables. J. ACM, 42(1):186–203, Jan. 1995.

[43] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, Jan. 1991.

[44] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, 1991.

[45] M. Herlihy. Advanced topics in distributed algorithms. Technion Lecture, 2011.
http://video.technion.ac.il/Courses/Adv Topics in Dist Algorithms.html.

[46] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues as
an example. In ICDCS, pages 522–529, 2003.

[47] M. Herlihy and S. Rajsbaum. The topology of shared-memory adversaries. In Proceedings of the
29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’10, pages
105–113, 2010.

[48] M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In STOC,
pages 111–120, May 1993.

187

[49] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. J. ACM,
46(2):858–923, 1999.

[50] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

[51] M. Herlihy and N. Shavit. On the nature of progress. In OPODIS, pages 313–328, 2011.

[52] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[53] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-party com-
putation (extended abstract). In Proceedings of the Sixteenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’97, pages 25–34, 1997.

[54] D. Imbs, M. Raynal, and G. Taubenfeld. On asymmetric progress conditions. In PODC, 2010.

[55] P. Jayanti, J. Burns, and G. Peterson. Almost optimal single reader single writer atomic register.
Journal of Parallel and Distributed Computing, 60:150–168, 2000.

[56] P. Jayanti, T. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects. Journal of the ACM,
45(3):451–500, 1998.

[57] F. Junqueira and K. Marzullo. A framework for the design of dependent-failure algorithms. Concur-
rency and Computation: Practice and Experience, 19(17):2255–2269, 2007.

[58] F. P. Junqueira and K. Marzullo. Designing algorithms for dependent process failures. In Future
Directions in Distributed Computing, pages 24–28, 2003.

[59] R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer Computations,
pages 85–103, 1972.

[60] D. N. Kozlov. Chromatic subdivision of a simplicial complex. Homology, Homotopy and Applications,
14(1):1–13, 2012.

[61] L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806–811, 1977.

[62] L. Lamport. Proving the correctness of multiprocessor programs. Transactions on software engineer-
ing, 3(2):125–143, Mar. 1977.

[63] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Trans. Comput., C-28(9):690–691, Sept. 1979.

[64] L. Lamport. On interprocess communication; part I: Basic formalism; part II: Algorithms. Distributed
Computing, 1(2):77–101, 1986.

[65] M. Li, J. Tromp, and P. Vityani. How to share concurrent wait-free variables. Journal of the ACM,
43(4):723–746, 1996.

[66] N. Linial. Doing the IIS. Unpublished manuscript, 2010.

[67] B. Liskov and S. Zilles. Specification techniques for data abstraction. IEEE Transactions on Software
Engineering, SE1:7–19, 1975.

188

[68] W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asynchronous shared mem-
ory systems. In WDAG, LNCS 857, pages 280–295, Sept. 1994.

[69] M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous
processes. Advances in Computing Research, 4:163–183, 1987.

[70] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[71] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11?(?):203–213, 1998.

[72] J. Misra. Axioms for memory access in asynchronous hardware systems. ACM Transactions on
Programming Languages and Systems, 8(1):143–153, 1986.

[73] S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic approach. Commu-
nications of the ACM, 19(5):279–285, 1976.

[74] C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science Pres, 1988.

[75] D. Parnas. On the criteria to be used in decomposing systems in to module. Communications of the
ACM, 15(2):1053–1058–336, 1972.

[76] D. Parnas. A technique for software modules with examples. Communications of the ACM, 15(2):330–
336, 1972.

[77] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, Apr. 1980.

[78] G. Peterson. Concurrent reading while writing. ACM Transactions on Programming Languages and
Systems, 5(1):46–55, 1983.

[79] M. Raynal. Sequential consistency as lazy linearizabilty. In Proc. 14th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’02, pages 151–152.

[80] M. Raynal. Algorithms for mutual exclusion. The MIT Press, 1986.

[81] M. Raynal. Token-based sequential consistency. International Journal of Computer Systems Science
and Engineering, 17(6):359–366, 2002.

[82] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public knowl-
edge. In STOC, pages 101–110, May 1993.

[83] A. K. Singh, J. Anderson, and M. Gouda. The elusive atomic register. Journal of the ACM, 41(2):331–
334, 1994.

[84] G. Taubenfeld. Synchronization algorithms and concurrent programming. Pearson Prentice-Hall,
2006.

[85] G. Taubenfeld. The computational structure of progress conditions. In DISC, 2010.

[86] K. Vidyasankar. Converting Lamport’s regular register to atomic register. Information Processing
Letters, 28(6):287–290, 1988.

189

[87] K. Vidyasankar. An elegant 1-writer multireader multivalued atomic register. Information Processing
Letters, 30(5):221–223, 1989.

[88] K. Vidyasankar. A very simple cosntruction of 1-writer multireader multivalued atomic variable. In-
formation Processing Letters, 37:323–326, 1991.

[89] P. M. B. Vitányi. Simple wait-free multireader registers. In Proceedings of the 16th International
Conference on Distributed Computing, DISC ’02, pages 118–132, 2002.

[90] P. M. B. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous hardware. In
Proceedings of the 27th Annual Symposium on Foundations of Computer Science, SFCS ’86, pages
233–243, 1986.

[91] M. Vucolić. The origin of quorum systems. Bulletin of EATCS, 101:125–147, June 2010.

[92] W. E. Weihl. Atomic data types. IEEE Database Eng. Bull., 8(2):26–33, 1985.

[93] G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algorithms, and the Practice
of Concurrency Control and Recovery. Morgan Kaufmann, 2002.

[94] P. Zieliński. Sub-consensus hierarchy is false (for symmetric, participation-aware tasks).
https://sites.google.com/site/piotrzielinski/home/symmetric.pdf.

[95] P. Zieliński. Anti-omega: the weakest failure detector for set agreement. In PODC, Aug. 2008.

[96] P. Zieliński. Anti-omega: the weakest failure detector for set agreement. Distributed Computing,
22(5-6):335–348, 2010.

190

