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The Programmer’s Toolbox:
Hardware Synchronization Instructions

* Depends on the processor;

* CAS generally provided;

* Test-and-Set and Fetch-and-Increment etc. may
or may not be provided;

* x86:
— Atomic exchange, increment, decrement provided
— Memory barrier also available

* New Intels (Haswell) provide transactional
memory



Example: Atomic Ops in GCC

type @ sync fetch and OP(type *ptr, type value);
type @ sync OP and fetch(type *ptr, type value);
// OP in {add,sub,or,and,xor,nand}

type @ sync val compare and swap(type *ptr, type
oldval, type newval);

bool  sync bool compare and swap(type *ptr, type
oldval, type newval);

__sync_synchronize(); // memory barrier



Intel’s Transactional Synchronization
Extensions (TSX)

* Instruction prefixes:
XACQUIRE
XRELEASE

Ex:

__hle {acquire,release} compare exchange n{l,2,4,8}

* Try to execute critical sections without acquiring/
releasing the lock.

* If conflict detected, abort and acquire the lock before
re-doing the work



Intel’s Transactional Synchronization
Extensions (TSX)

2. Restricted Transactional Memory (RTM)

_xbegin();
_xabort();

_Xtest();
_xend();

Not starvation free!

Transactions can be aborted for a variety of reasons.
Should have a non-transactional back-up.

Limited transaction size.



Intel’s Transactional Synchronization
Extensions (TSX)

2. Restricted Transactional Memory (RTM)

Example:

if (_xbegin() == XBEGIN STARTED) {
counter = counter + 1;
_xend();

} else {

__sync_fetch and add(&counter,1l);

}
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Concurrent Algorithm Correctness

* Designing correct concurrent algorithms:
|. Theoretical part

2. Practical part

* The processor and compiler optimize
assuming no concurrency!



The Memory Consistency Model

//A, B shared variables, initially O0;

//rl, r2 — local variables;
Pl P2

A= 1; B = 1;

rl = B; r2 = A;

What values can rl and r2 take?

(assume x86 processor)

Answer:
(0, 1), (1,0), (I,1) and (0,0)



The Memory Consistency Model

* The order in which memory instructions
appear to execute

— What would the programmer like to see!

— All operations executed in some sequential order;

— Memory operations of each thread in program
order;

— Intuitive, but limits performance;



The Memory Consistency Model

How can the processor reorder instructions to
different memory addresses!?

//A,B,C
x86 (Intel, AMD):TSO variant Jiglenals
* Reads not reordered w.r.t. reads
* Writes not reordered w.r.t writes
* Writes not reordered w.r.t. reads
* Reads may be reordered w.r.t. writes

to different memory addresses

int x,v,2;
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The Memory Consistency Model

* Single thread — reorderings transparent;

* Avoid reorderings: memory barriers
— x86 — implicit in atomic ops;
— “volatile” in Java;
— Expensive - use only when really necessary;

* Different processors — different memory
consistency models
— e.g.,, ARM — relaxed memory model (anything goes!);
— VMs (e.g. JVM, CLR) have their own memory models;



Beware of the Compiler

void lock(int * some lock) ({

while (CAS(some lock,0,1) != 0) {}
asm volatile(”” ::: “memory”); //compiler barrier
}
void unlock(int * some lock) ({
asm volatile(“” ::: “memory”); //compiler barrier
*some lock = 0;

}

volatile int the lock=0; C ”volatile” !=

Java “volatile”
lock(&the lock);

* The compiler can:
* reorder
* remove instructions
* not write values to memory

unlock(&the lock);
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Concurrent Programming Techniques

* What techniques can we use to speed up our
concurrent application?

* Main idea: minimize contention on cache lines

e Use case: Locks
—acquire()

— release()



Let’s start with a simple lock...

typedef volatile uint lock t;

void acquire(lock t * some lock) {
while (TAS(some lock) != 0) {}
asm volatile(”” ::: “memory”);

}

void release(lock t * some lock) {
asm volatile(”” ::: “memory”);
*some lock = 0;



How good is this lock!?

* A simple benchmark

* Have 48 threads continuously acquire a lock,
update some shared data, and unlock

* Measure how many operations we can do in a
second



How can we improve things!?
Avoid cache-line ping-pong:
Test-and-Test-and-Set Lock

void acquire(lock t * some lock) {

while(1l) {
while (*some lock != 0) {}
if (TAS(some lock) == 0) {
return;
}
}
asm volatile(“” ::: “memory”);

}

void release(lock t * some lock) {
asm volatile(”” ::: “memory”);
*some lock = 0;
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But we can do even better
Avoid thundering herd:

Test-and-Test-and-Set with Back-off

void acquire(lock t * some lock) {
uint backoff = INITIAL BACKOFF;

while(1l) {
while (*some lock != 0) {}
if (TAS(some lock) == 0) {
return;
} else {

lock sleep(backoff);
backoff=min(backoff*2,MAXTMUM BACKOFF);

}
}
asm volatile(”” ::: “memory”);
}
void release(lock t * some lock) {
asm volatile(”” ::: “memory”);

*some lock = 0;
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Number of processed requests
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What if we want fairness?

typedef ticket lock t ({
volatile uint head;
volatile uint tail;
} ticket lock t;

void acquire(ticket lock t * a lock) {
uint my ticket = fetch and inc(&(a lock->tail));
while (a lock->head != my ticket) {}

asm volatile(”” ::: “memory”);

}

void release(ticket lock t * a lock) {
asm volatile(”” ::: “memory”);

a_ lock->head++;



What if we want fairness?
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Can we back-off here as well?

Yes, we can:
Proportional back-off

void acquire(ticket lock t * a lock) {
uint my ticket = fetch and inc(&(a lock->tail));
uint distance, current ticket;
while (1) {
current ticket = a lock->head;
if (current ticket == my ticket) break;
distance = my ticket — current ticket;
if (distance > 1)
lock sleep(distance * BASE SLEEP);

}
asm volatile(”” ::: “memory”);

}

void release(ticket lock t * a lock) {
asm volatile(”” ::: “memory”);

a_lock->head++;
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Still, everyone is spinning on the same
variable....

Use a different address for each thread:
Queue Locks

spin spin spin

Use with moderation: storage overheads



Performance comparison
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To sum it up

Reading before trying to write
Pausing when it’s not our turn
Ensuring fairness

Accessing disjoint addresses (cache lines)

More than 10x performance gain!



Conclusion

* Concurrent algorithm design:
— Theoretical design

— Practical design (may be just as important)

* You need to know your hardware
— For correctness

— For performance



Reminder

Programming assighments due next Monday!

If you have any questions,

attend today’s exercise session



