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Different Types of Failures
Crash / Fail-stop

Receive OmissionsSend Omissions

General Omission

Arbitrary failures, 
authenticated messages

Arbitrary failures
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Arbitrary “Byzantine” Failures
• Some subset of the processes may fail:

– Send fake messages
– Not send any messages
– Try to disrupt the computation
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Why Byzantine Fault Tolerance?
• Does this happen in the real world?

– Malfunctioning hardware
– Buggy software
– Compromised system due to hackers

• Assumptions are vulnerabilities
• Is the cost worth it?

– Hardware is always getting cheaper
– Protocols are getting more and more efficient.
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Byzantine Fault Tolerance
• Seen in the fail-stop model: 

– Question: “How do you build a reliable service?”
– Answer: State machine replication solves the 

problem of crash failures.

• This week:
– What if we want to build a service that can 

tolerate buggy software, hackers, etc... How do 
we build a service that tolerates arbitrary 
failures?
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Consensus
• Key building block for state machine 

replication.
– Agreement: not two processes decide on 

different values.
– Validity: every decision is the initial value of 

some process.
– Termination: every correct process eventually 

decides.

Monday, 13 December 2010



Validity
• (Strong) Validity: If all correct processes 

start with the same initial value v, then 
value v is the only decision value of 
correct processes.

• (Weak) Validity: If there are no failures, 
then every decision is the  initial value of 
some process.
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Achieving Fault Tolerance
• How many arbitrary failures can we 

tolerate?
– Assume a system of n processes.
– For crash failures:

• If failure-detector P, then n-1 failures.
• If failure-detector <>P, then < n/2 failures.

– For arbitrary failures:
• If failure-detector P, then < n/3 failures.
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Number of Possible Failures
Lemma 1: In a system with n=3 and 1 failure, 
there is no algorithm that solves consensus.

p1

p2

p3

Assume there exists some such protocol A.

focus on the whiteboard
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Another look on why n>3t
• read-write register
• t faulty, liveness => n-t responses
• W set: n-t responses
• R set: n-t responses
• W and R have n-2t in common

– t may not be faulty
– W and R have n-3t in common

• => n>3t
10
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Number of Possible Failures
Lemma 1: In a system with n processes & t = n/3 
failures, there is no algorithm that solves 
consensus.

Proof: By reduction.  Given an algorithm A that 
solves consensus for system (3t,t) where n=3t, we 
show how to solve consensus in a system (3,1) 
where n=3 and t=1.  Since we know this is 
impossible, we get a contradiction. 
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Number of Possible Failures
Lemma 1: In a system with n processes and        t 
= n/3 failures, there is no algorithm that solves 
consensus.

Proof: (Continued)
• Given algorithm A for (3t, t)-system.
• In (3,1) system, each process pi simulates t 
process in system (3t, t).  It assigns its own 
value to each process that it is simulating, and 
outputs a decision if any of them decide.
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Solving Consensus
• Assume synchronous rounds (i.e., failure 

detector P):
In every round, each correct process:

1. sends a message
2. receives all messages sent in that round
3. updates its state.
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Solving Consensus
• Two variants:

1. No signatures, no cryptography.
2. Signatures: a process can sign a message 

such that every other process that receives 
the signed message can determine precisely 
who it came from.

• Note: If a process forwards a signed message to 
someone else, they can check the signature too!
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Solving Consensus
• Today:

1. Algorithm Signed_Consensus: solves 
consensus when processes can sign 
messages. 

2. Algorithm Echo_Broadcast: provides some 
special reliable broadcast guarantees. NOT 
(today)

3. Use Echo_Broadcast to solve consensus with 
no signatures. NOT (today)
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Authenticated Agreement
• Each process pi begins with initial value vi.

• Each process maintains a set of candidate values 
VALUES.

• For any string x, process pi can generate a signature 
sign(x,i) that authenticates the fact that x came from 
pi. 
– No other process except pi can generate sign(x,i). 
– Every other process can verify that sign(x,i) is 

correct.
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Authenticated Agreement
• In round 0, process pi:

1. Adds its initial value vi to VALUES.
2. Generates signature s=sign(vi).
3. Sends [vi, s] to all in round 1.
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Authenticated Agreement
• In each round 0 < r ≤ t+1, process pi:

1. Receives a set of message M.
2. Each m in M is [v : s1 : s2 : s3 : ...]

• Each sj is the signature of some process pj on the 
string [v : s1 : s2 :  ... : s[j-1]].

• If any signatures are invalid, then discard m. 

3. For each m in M:
• If pi already signed m, then do nothing.
• Otherwise, pi adds its signature s = sign(m)
• Then in the next round, pi sends [m : s] to every 

process that has not already signed m.
• Add v to set VALUES.
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Authenticated Agreement
• At the end of round t+1:

– Choose the minimum v in VALUES.
– Decide(v).
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Authenticated Agreement
• Proof: Termination

– Every node decides after t+1 rounds.
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Authenticated Agreement
• Proof: Weak Validity

– Assume every process is correct.  Then all 
messages sent contain values that were 
proposed by some process.  So every value in 
VALUES was proposed by some value.
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Authenticated Agreement
• Proof: Agreement

– Let v be the minimum value decided by some 
correct process.

– Let r be the first round in which any correct 
process adds v to VALUES.  

– Let pj be a correct process that adds v to 
VALUES in round r.
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Authenticated Agreement
• Proof: Agreement

– Case 1: r=0
• v = vj is the initial value of process pj.
• Since pj is correct, it sends [vj : sign(vj)] to 

every process in round 1.
• Every process receives this message and 

adds v to VALUES.
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Authenticated Agreement
• Proof: Agreement

– Case 2: 1 < r < t+1
• Process pj receives a message m containing value v.
• Every process that has already sign m has already 

received value v.
• Process pj signs m and in the next round sends it to 

every process that has not yet received v.
• Since pj is correct, every process receives the signed 

m in the next round and extracts v, adding it to 
VALUES.
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Authenticated Agreement
• Proof: Agreement

– Case 3: r = t+1
• Process pj receives a message m containing value v.
• Message m contains t+1 signatures.
• Thus, one of the processes that signed m must have 

been correct!
• But, by assumption, round r is the first round in which 

any process puts value v in VALUES.
• Contradiction!!  Case 3 can’t happen.
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Authenticated Agreement
• Proof: Agreement

– Thus, we conclude that every process adds v to 
VALUES by the end of round t+1.

– By assumption, v is the minimum value decided 
by any process.

– Since each process decides the smallest value it 
has in VALUES, every process decides v.
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Byzantine Agreement
• Summary:

– In a synchronous model, in 2(t+1) rounds we 
can solve Byzantine agreement as long as 
t<n/3.

– Note: consensus can be solved in t+1 rounds.  
But standard solutions use exponential 
message complexity!  (See EIG trees.)
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Byzantine Fault Tolerance
• Idea: use Byzantine Agreement to build a 

replicated state machine!

• Robust: tolerates arbitrary failures.

• But: how to do it efficiently?  What about 
with <>P?  Can we do Byzantine Paxos??
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