
Byzantine Failures

Nikola Knezevic

© knl

Monday, 13 December 2010

Different Types of Failures
Crash / Fail-stop

Receive OmissionsSend Omissions

General Omission

Arbitrary failures,
authenticated messages

Arbitrary failures

Monday, 13 December 2010

Arbitrary “Byzantine” Failures
• Some subset of the processes may fail:

– Send fake messages
– Not send any messages
– Try to disrupt the computation

Monday, 13 December 2010

Why Byzantine Fault Tolerance?
• Does this happen in the real world?

– Malfunctioning hardware
– Buggy software
– Compromised system due to hackers

• Assumptions are vulnerabilities
• Is the cost worth it?

– Hardware is always getting cheaper
– Protocols are getting more and more efficient.

Monday, 13 December 2010

Byzantine Fault Tolerance
• Seen in the fail-stop model:

– Question: “How do you build a reliable service?”
– Answer: State machine replication solves the

problem of crash failures.

• This week:
– What if we want to build a service that can

tolerate buggy software, hackers, etc... How do
we build a service that tolerates arbitrary
failures?

Monday, 13 December 2010

Consensus
• Key building block for state machine

replication.
– Agreement: not two processes decide on

different values.
– Validity: every decision is the initial value of

some process.
– Termination: every correct process eventually

decides.

Monday, 13 December 2010

Validity
• (Strong) Validity: If all correct processes

start with the same initial value v, then
value v is the only decision value of
correct processes.

• (Weak) Validity: If there are no failures,
then every decision is the initial value of
some process.

Monday, 13 December 2010

Achieving Fault Tolerance
• How many arbitrary failures can we

tolerate?
– Assume a system of n processes.
– For crash failures:

• If failure-detector P, then n-1 failures.
• If failure-detector <>P, then < n/2 failures.

– For arbitrary failures:
• If failure-detector P, then < n/3 failures.

Monday, 13 December 2010

Number of Possible Failures
Lemma 1: In a system with n=3 and 1 failure,
there is no algorithm that solves consensus.

p1

p2

p3

Assume there exists some such protocol A.

focus on the whiteboard

Monday, 13 December 2010

Another look on why n>3t
• read-write register
• t faulty, liveness => n-t responses
• W set: n-t responses
• R set: n-t responses
• W and R have n-2t in common

– t may not be faulty
– W and R have n-3t in common

• => n>3t
10

Monday, 13 December 2010

Number of Possible Failures
Lemma 1: In a system with n processes & t = n/3
failures, there is no algorithm that solves
consensus.

Proof: By reduction. Given an algorithm A that
solves consensus for system (3t,t) where n=3t, we
show how to solve consensus in a system (3,1)
where n=3 and t=1. Since we know this is
impossible, we get a contradiction.

Monday, 13 December 2010

Number of Possible Failures
Lemma 1: In a system with n processes and t
= n/3 failures, there is no algorithm that solves
consensus.

Proof: (Continued)
• Given algorithm A for (3t, t)-system.
• In (3,1) system, each process pi simulates t
process in system (3t, t). It assigns its own
value to each process that it is simulating, and
outputs a decision if any of them decide.

Monday, 13 December 2010

Solving Consensus
• Assume synchronous rounds (i.e., failure

detector P):
In every round, each correct process:

1. sends a message
2. receives all messages sent in that round
3. updates its state.

Monday, 13 December 2010

Solving Consensus
• Two variants:

1. No signatures, no cryptography.
2. Signatures: a process can sign a message

such that every other process that receives
the signed message can determine precisely
who it came from.

• Note: If a process forwards a signed message to
someone else, they can check the signature too!

Monday, 13 December 2010

Solving Consensus
• Today:

1. Algorithm Signed_Consensus: solves
consensus when processes can sign
messages.

2. Algorithm Echo_Broadcast: provides some
special reliable broadcast guarantees. NOT
(today)

3. Use Echo_Broadcast to solve consensus with
no signatures. NOT (today)

Monday, 13 December 2010

Authenticated Agreement
• Each process pi begins with initial value vi.

• Each process maintains a set of candidate values
VALUES.

• For any string x, process pi can generate a signature
sign(x,i) that authenticates the fact that x came from
pi.
– No other process except pi can generate sign(x,i).
– Every other process can verify that sign(x,i) is

correct.

Monday, 13 December 2010

Authenticated Agreement
• In round 0, process pi:

1. Adds its initial value vi to VALUES.
2. Generates signature s=sign(vi).
3. Sends [vi, s] to all in round 1.

Monday, 13 December 2010

Authenticated Agreement
• In each round 0 < r ≤ t+1, process pi:

1. Receives a set of message M.
2. Each m in M is [v : s1 : s2 : s3 : ...]

• Each sj is the signature of some process pj on the
string [v : s1 : s2 : ... : s[j-1]].

• If any signatures are invalid, then discard m.

3. For each m in M:
• If pi already signed m, then do nothing.
• Otherwise, pi adds its signature s = sign(m)
• Then in the next round, pi sends [m : s] to every

process that has not already signed m.
• Add v to set VALUES.

Monday, 13 December 2010

Authenticated Agreement
• At the end of round t+1:

– Choose the minimum v in VALUES.
– Decide(v).

Monday, 13 December 2010

Authenticated Agreement
• Proof: Termination

– Every node decides after t+1 rounds.

Monday, 13 December 2010

Authenticated Agreement
• Proof: Weak Validity

– Assume every process is correct. Then all
messages sent contain values that were
proposed by some process. So every value in
VALUES was proposed by some value.

Monday, 13 December 2010

Authenticated Agreement
• Proof: Agreement

– Let v be the minimum value decided by some
correct process.

– Let r be the first round in which any correct
process adds v to VALUES.

– Let pj be a correct process that adds v to
VALUES in round r.

Monday, 13 December 2010

Authenticated Agreement
• Proof: Agreement

– Case 1: r=0
• v = vj is the initial value of process pj.
• Since pj is correct, it sends [vj : sign(vj)] to

every process in round 1.
• Every process receives this message and

adds v to VALUES.

Monday, 13 December 2010

Authenticated Agreement
• Proof: Agreement

– Case 2: 1 < r < t+1
• Process pj receives a message m containing value v.
• Every process that has already sign m has already

received value v.
• Process pj signs m and in the next round sends it to

every process that has not yet received v.
• Since pj is correct, every process receives the signed

m in the next round and extracts v, adding it to
VALUES.

Monday, 13 December 2010

Authenticated Agreement
• Proof: Agreement

– Case 3: r = t+1
• Process pj receives a message m containing value v.
• Message m contains t+1 signatures.
• Thus, one of the processes that signed m must have

been correct!
• But, by assumption, round r is the first round in which

any process puts value v in VALUES.
• Contradiction!! Case 3 can’t happen.

Monday, 13 December 2010

Authenticated Agreement
• Proof: Agreement

– Thus, we conclude that every process adds v to
VALUES by the end of round t+1.

– By assumption, v is the minimum value decided
by any process.

– Since each process decides the smallest value it
has in VALUES, every process decides v.

Monday, 13 December 2010

Byzantine Agreement
• Summary:

– In a synchronous model, in 2(t+1) rounds we
can solve Byzantine agreement as long as
t<n/3.

– Note: consensus can be solved in t+1 rounds.
But standard solutions use exponential
message complexity! (See EIG trees.)

Monday, 13 December 2010

Byzantine Fault Tolerance
• Idea: use Byzantine Agreement to build a

replicated state machine!

• Robust: tolerates arbitrary failures.

• But: how to do it efficiently? What about
with <>P? Can we do Byzantine Paxos??

Monday, 13 December 2010

